Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Temperature (Austin) ; 10(4): 444-453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130655

RESUMO

The heated environment shifts the sympatho-vagal balance toward sympathetic predominance and vagal withdrawal. Women's heart is more reliant on vagal autonomic control, while men's heart is more dependent on sympathetic control. However, sex differences in cardiovascular autonomic responses to heat stress remain unknown. We aimed to investigate the cardiovascular autonomic regulation under heat stress between sexes. Thirty-two young participants (27 ± 4 years old; 16 women) were enrolled in a single visit, resting for 30min at baseline (thermal reference condition TC; ∼24°C) and 30min under a heated environment (HOT; ∼38°C). Blood pressure (BP), skin temperature, electrocardiogram, and respiratory oscillations were continuously recorded. The heart rate variability (HRV) was assessed by spectral analysis (low-frequency [LFnu; sympathetic and vagal] and high-frequency [HFnu; vagal]), and symbolic analysis (0 V% [sympathetic] and 2UV%, and 2LV% [vagal]). The spontaneous baroreflex sensitivity (BRS) was calculated by the gain between BP and R-R within the LF band (αLF). The estimated maximal aerobic capacity and body surface area were employed as covariates in sex comparisons. The effects of HOT were the following: 1) Women have a greater cardiac vagal withdrawal to heat stress compared to men; 2) Sex differences on cardiac autonomic response to heat stress exist after controlling for the effect of estimated physical fitness and body surface area. Therefore, heat stress provokes a higher vagal withdrawal to the heart in women compared to men. It could be attributed to sex per se since significant differences between men and women were not modified after covariate analysis.

2.
Physiol Meas ; 44(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343372

RESUMO

Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.


Assuntos
Sistema Nervoso Autônomo , Sistema Cardiovascular , Hipertermia Induzida , Adulto , Humanos , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/inervação , Sistema Cardiovascular/fisiopatologia , Coração/inervação , Coração/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta/efeitos adversos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos
3.
Physiol Meas ; 42(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34261052

RESUMO

Objective.To investigate the interplay between active standing and heat stress on cardiovascular autonomic modulation in healthy individuals.Approach.Blood pressure (BP) and ECG were continuously recorded during 30 min in supine (SUP) and 6 min in orthostatic position (ORT) under thermal reference (TC; ∼24 °C) or heated environment (HOT; ∼36 °C) conditions, in a randomized order. All data collection was performed during the winter and spring seasons when typical outdoor temperatures are ∼23 °C. Spectral analysis was employed by the autoregressive model of R-R and systolic blood pressure (SBP) time series and defined, within each band, in low (LF, 0.04 to 0.15 Hz) and high (0.15-0.40 Hz) frequencies. The indices of cardiac sympathetic (LF) and cardiac parasympathetic (HF) were normalized (nu) dividing each band power by the total power subtracted the very-low component (<0.04 Hz), obtaining the cardiac autonomic balance (LF/HF) modulation. The gain of the relationship between SBP and R-R variabilities within the LF band was utilized for analysis of spontaneous baroreflex sensitivity (alpha index;αLF). Nonlinear analysis was employed through symbolic dynamics of R-R, which provided the percentage of sequences of three heart periods without changes in R-R interval (0V%; cardiac sympathetic modulation) and two significant variations (2UV% and 2LV%; cardiac vagal modulation).Main results.HOT increased 0V% and HR, and decreasedαLF and 2UV% during SUP compared to TC. During ORT, HOT provokes a greater increment on HR, LF/HF and 0V%, indexes compared to ORT under TC.Significance.At rest, heat stress influences both autonomic branches, increasing sympathetic and decreasing vagal modulation and spontaneous baroreflex sensitivity. The augmented HR during active standing under heat stress seems to be mediated by a greater increment in cardiac sympathetic modulation, showing an interplay between gravitational and thermal stimulus.


Assuntos
Sistema Nervoso Autônomo , Sistema Cardiovascular , Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA