Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 39(8): 1493-1498, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30002054

RESUMO

BACKGROUND AND PURPOSE: The supplementary motor area can be a critical region in the preoperative planning of patients undergoing brain tumor resection because it plays a role in both language and motor function. While primary motor regions have been successfully identified using resting-state fMRI, there is variability in the literature regarding the identification of the supplementary motor area for preoperative planning. The purpose of our study was to compare resting-state fMRI to task-based fMRI for localization of the supplementary motor area in a large cohort of patients with brain tumors presenting for preoperative brain mapping. MATERIALS AND METHODS: Sixty-six patients with brain tumors were evaluated with resting-state fMRI using seed-based analysis of hand and orofacial motor regions. Rates of supplementary motor area localization were compared with those in healthy controls and with localization results by task-based fMRI. RESULTS: Localization of the supplementary motor area using hand motor seed regions was more effective than seeding using orofacial motor regions for both patients with brain tumor (95.5% versus 34.8%, P < .001) and controls (95.2% versus 45.2%, P < .001). Bilateral hand motor seeding was superior to unilateral hand motor seeding in patients with brain tumor for either side (95.5% versus 75.8%/75.8% for right/left, P < .001). No difference was found in the ability to identify the supplementary motor area between patients with brain tumors and controls. CONCLUSIONS: In addition to task-based fMRI, seed-based analysis of resting-state fMRI represents an equally effective method for supplementary motor area localization in patients with brain tumors, with the best results obtained with bilateral hand motor region seeding.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/patologia , Estudos Retrospectivos , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-31695241

RESUMO

PURPOSE: OCT offers high in-plane micrometer resolution, enabling studies of neurodegenerative and ocular-disease mechanisms via imaging of the retina at low cost. An important component to such studies is inter-scanner deformable image registration. Image quality of OCT, however, is suboptimal with poor signal-to-noise ratio and through-plane resolution. Geometry of OCT is additionally improperly defined. We developed a diffeomorphic deformable registration method incorporating constraints accommodating the improper geometry and a decentralized-modality-insensitive-neighborhood-descriptors (D-MIND) robust against degradation of OCT image quality and inter-scanner variability. METHOD: The method, called D-MIND Demons, estimates diffeomorphisms using D-MINDs under constraints on the direction of velocity fields in a MIND-Demons framework. Descriptiveness of D-MINDs with/without denoising was ranked against four other shape/texture-based descriptors. Performance of D-MIND Demons and its variants incorporating other descriptors was compared for cross-scanner, intra- and inter-subject deformable registration using clinical retina OCT data. RESULT: D-MINDs outperformed other descriptors with the difference in mutual descriptiveness between high-contrast and homogenous regions > 0.2. Among Demons variants, D-MIND-Demons was computationally efficient, demonstrating robustness against OCT image degradation (noise, speckle, intensity-non-uniformity, and poor through-plane resolution) and consistent registration accuracy [(4±4 µm) and (4±6 µm) in cross-scanner intra- and inter-subject registration] regardless of denoising. CONCLUSIONS: A promising method for cross-scanner, intra- and inter-subject OCT image registration has been developed for ophthalmological and neurological studies of retinal structures. The approach could assist image segmentation, evaluation of longitudinal disease progression, and patient population analysis, which in turn, facilitate diagnosis and patient-specific treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...