Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(22): 27156-27165, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235644

RESUMO

Elastomers based on block copolymers can self-organize into ordered nanoscale structures, making them attractive for use as flexible conductive nanocomposites. Understanding how ordered structures impact electrical properties is essential for practical applications. This study investigated the morphological evolution of flexible conductive elastomers based on polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers with aligned single- or multi-wall carbon nanotubes (SWCNTs or MWCNTs) and their electrical conductivity under large deformations. Oriented nanocomposites were obtained through injection molding and characterized using two different setups: tensile testing monitored by in situ small-angle X-ray scattering (SAXS) and tensile testing with simultaneous electrical conductivity measurements. Our findings demonstrate that structural orientation significantly influences electrical conductivity, with higher conductivity in the longitudinal direction due to the preferred orientation of carbon nanotubes. Tensile testing demonstrated that carbon nanotubes accelerate the process of realignment of the ordered structure. As a consequence, higher deformations reduced the conductivity of samples with longitudinal alignment due to the disruption of percolation contacts between nanotubes, while in samples with a transverse alignment the process promoted the formation of a new conductive network, increasing electrical conductivity.

2.
Front Chem ; 11: 1083399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993814

RESUMO

Poly (vinyl chloride) (PVC) is commonly used to manufacture biomedical devices and hospital components, but it does not present antimicrobial activity enough to prevent biofouling. With the emergence of new microorganisms and viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that was responsible for the global pandemic caused by Coronavirus Disease 2019 (COVID-19), it is evident the importance of the development of self-disinfectant PVC for hospital environments and medical clinics where infected people remain for a long time. In this contribution, PVC nanocomposites with silver nanoparticles (AgNPs) were prepared in the molten state. AgNPs are well-known as antimicrobial agents suitable for designing antimicrobial polymer nanocomposites. Adding 0.1 to 0.5 wt% AgNPs significantly reduced Young's modulus and ultimate tensile strength of PVC due to the emergence of microstructural defects in the PVC/AgNP nanocomposites, but the impact strength did not change significantly. Furthermore, nanocomposites have a higher yellowness index (YI) and lower optical bandgap values than PVC. The PVC/AgNP nanocomposites present virucidal activity against SARS-CoV-2 (B.1.1.28 strain) within 48 h when the AgNP content is at least 0.3 wt%, suitable for manufacturing furniture and hospital equipment with self-disinfectant capacity to avoid secondary routes of COVID-19 contagion.

3.
J Microencapsul ; 38(5): 338-356, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33938373

RESUMO

Microencapsulation of curing agents is a major strategy for the development of self-healing polymers. Isocyanates are among the most promising compounds for the development of one-part, catalyst free, self-healing materials, but their microencapsulation is challenging due to their high reactivity. To keep the healing agent intact in the liquid state and containing free-NCO groups, the monitoring of several synthesis parameters is essential. This review aims to summarise the outcomes in the microencapsulation of isocyanates, emphasising the efforts reported in the literature to modulate the microcapsule properties. In this regard, the main synthesis procedures are presented, followed by the most relevant characterisation methods used to assess microcapsule properties. The correlation between these properties and synthesis parameters is also discussed, and finally the main potential and challenges for industrial applications are highlighted.


Assuntos
Cápsulas , Isocianatos/química , Compostos de Epóxi/química , Indústrias , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...