Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(67): 15315-15325, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31461187

RESUMO

UiO-66, composed by Zr-oxide inorganic bricks [Zr6 (µ3 -O)4 (µ3 -OH)4 ] and organic terephthalate linkers, is one of the most studied metal-organic frameworks (MOFs) due to its exceptional thermal, chemical, and mechanical stability. Thanks to its high connectivity, the material can withstand structural deformations during activation processes such as linker exchange, dehydration, and defect formation. These processes do alter the zirconium coordination number in a dynamic way, creating open metal sites for catalysis and thus are able to tune the catalytic properties. In this work, it is shown, by means of first-principle molecular-dynamics simulations at operating conditions, how protic solvents may facilitate such changes in the metal coordination. Solvent can induce structural rearrangements in the material that can lead to undercoordinated but also overcoordinated metal sites. This is demonstrated by simulating activation processes along well-chosen collective variables. Such enhanced MD simulations are able to track the intrinsic dynamics of the framework at realistic conditions.

2.
Chem Sci ; 9(10): 2723-2732, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732056

RESUMO

UiO-66 is a showcase example of an extremely stable metal-organic framework, which maintains its structural integrity during activation processes such as linker exchange and dehydration. The framework can even accommodate a substantial number of defects without compromising its stability. These observations point to an intrinsic dynamic flexibility of the framework, related to changes in the coordination number of the zirconium atoms. Herein we follow the dynamics of the framework in situ, by means of enhanced sampling molecular dynamics simulations such as umbrella sampling, during an activation process, where the coordination number of the bridging hydroxyl groups capped in the inorganic Zr6(µ3-O)4(µ3-OH)4 brick is reduced from three to one. Such a reduction in the coordination number occurs during the dehydration process and in other processes where defects are formed. We observe a remarkable fast response of the system upon structural changes of the hydroxyl group. Internal deformation modes are detected, which point to linker decoordination and recoordination. Detached linkers may be stabilized by hydrogen bonds with hydroxyl groups of the inorganic brick, which gives evidence for an intrinsic dynamic acidity even in the absence of protic guest molecules. Our observations yield a major step forward in the understanding on the molecular level of activation processes realized experimentally but that is hard to track on a purely experimental basis.

3.
Chemphyschem ; 19(4): 420-429, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29239511

RESUMO

UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional Brønsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites.


Assuntos
Estruturas Metalorgânicas/química , Metanol/química , Solventes/química , Sítios de Ligação , Ligação de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , Método de Monte Carlo , Porosidade , Prótons , Teoria Quântica , Água/química
4.
J Phys Chem A ; 121(46): 8825-8834, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083904

RESUMO

The spectroscopic properties of As4S4 with pressure have been computed by the quantum mechanical XP-PCM method and by density functional theory periodic calculations. The comparison has allowed the interpretation of the available experimental data. By comparison of the two methods and with experiments, we show that the XP-PCM method is able to reproduce the same behavior of the periodic calculations with much lower computational cost allowing to be adopted as a first choice computational tool for a qualitative interpretation of molecular crystals properties under pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...