Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15610-15622, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859208

RESUMO

Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor manufacturing, communications, biology, defense, and beyond. Accurately and efficiently modeling CPA+NLO-based laser systems is challenging because of the complex coupled processes and diverse simulation frameworks. Our modular start-to-end model unlocks the potential for exciting new optimization and inverse design approaches reliant on data-driven machine learning methods, providing a means to create tailored CPA+NLO systems unattainable with current models. To demonstrate this new, to our knowledge, technical capability, we present a study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.

2.
Opt Lett ; 49(3): 450-453, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300028

RESUMO

We present a single-stage optical parametric amplifier (OPA) with an average conversion efficiency up to 38%, tunable between 1.01 and 1.18 µm. The OPA seed is produced by a gain-managed nonlinear fiber amplifier. Numerical modeling of the seed pulse generation shows a linear chirp, a smoothly broadened redshifted spectrum, and a high spectral energy density. When up-converted to the visible through second-harmonic generation, the signal pulses are suitable for visible photocathode excitation.

3.
Light Sci Appl ; 13(1): 29, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267427

RESUMO

Bremsstrahlung-the spontaneous emission of broadband radiation from free electrons that are deflected by atomic nuclei-contributes to the majority of X-rays emitted from X-ray tubes and used in applications ranging from medical imaging to semiconductor chip inspection. Here, we show that the bremsstrahlung intensity can be enhanced significantly-by more than three orders of magnitude-through shaping the electron wavefunction to periodically overlap with atoms in crystalline materials. Furthermore, we show how to shape the bremsstrahlung X-ray emission pattern into arbitrary angular emission profiles for purposes such as unidirectionality and multi-directionality. Importantly, we find that these enhancements and shaped emission profiles cannot be attributed solely to the spatial overlap between the electron probability distribution and the atomic centers, as predicted by the paraxial and non-recoil theory for free electron light emission. Our work highlights an unprecedented regime of free electron light emission where electron waveshaping provides multi-dimensional control over practical radiation processes like bremsstrahlung. Our results pave the way towards greater versatility in table-top X-ray sources and improved fundamental understanding of quantum electron-light interactions.

4.
Nat Chem ; 15(11): 1549-1558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723259

RESUMO

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.


Assuntos
Proteínas , Cristalografia por Raios X , Modelos Moleculares , Temperatura , Proteínas/química , Conformação Molecular , Conformação Proteica
5.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37695261

RESUMO

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Assuntos
Cobre , Complexo IV da Cadeia de Transporte de Elétrons , Bovinos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredução , Cobre/química , Ligantes , Oxigênio/química , Cristalografia por Raios X , Ferro/química , Água/metabolismo
6.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563326

RESUMO

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Assuntos
Rodopsina , Vibração , Movimento (Física) , Ligação de Hidrogênio
7.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214971

RESUMO

Cytochrome c oxidase (C c O) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, C c O has a unique binuclear center (BNC) comprised of a copper atom (Cu B ) and a heme a 3 iron, where O 2 binds and is reduced to water. CO is a versatile O 2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine C c O (bC c O) revealed that photolyzing CO from the heme a 3 iron leads to a metastable intermediate (Cu B -CO), where CO is bound to Cu B , before it escapes out of the BNC. Here, with a time-resolved serial femtosecond X-ray crystallography-based pump-probe method, we detected a geminate photoproduct of the bC c O-CO complex, where CO is dissociated from the heme a 3 iron and moved to a temporary binding site midway between the Cu B and the heme a 3 iron, while the locations of the two metal centers and the conformation of the Helix-X, housing the proximal histidine ligand of the heme a 3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bC c O, allows the full definition of the ligand dissociation trajectory, as well as the associated protein dynamics.

8.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35959919

RESUMO

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Assuntos
Escherichia coli , Microscopia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química
9.
Nat Commun ; 12(1): 6531, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764256

RESUMO

Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Ligação de Hidrogênio , Complexo de Proteína do Fotossistema II/genética , Prótons , Água
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947814

RESUMO

Intramolecular charge transfer and the associated changes in molecular structure in N,N'-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon-carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon-carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps.

11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753488

RESUMO

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Rodopsinas Microbianas/metabolismo , Cátions Monovalentes/metabolismo , Canais de Cloreto/isolamento & purificação , Canais de Cloreto/efeitos da radiação , Canais de Cloreto/ultraestrutura , Cristalografia/métodos , Radiação Eletromagnética , Lasers , Simulação de Dinâmica Molecular , Nocardioides , Conformação Proteica em alfa-Hélice/efeitos da radiação , Estrutura Terciária de Proteína/efeitos da radiação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efeitos da radiação , Proteínas Recombinantes/ultraestrutura , Retinaldeído/metabolismo , Retinaldeído/efeitos da radiação , Rodopsinas Microbianas/isolamento & purificação , Rodopsinas Microbianas/efeitos da radiação , Rodopsinas Microbianas/ultraestrutura , Água/metabolismo
12.
Nat Commun ; 12(1): 1672, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723266

RESUMO

X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection.


Assuntos
Hemoglobinas/química , Hemoglobinas/efeitos da radiação , Injeções a Jato/métodos , Lasers , Cristalografia por Raios X , Elétrons , Humanos , Injeções a Jato/instrumentação , Técnicas de Sonda Molecular , Raios X
13.
Sci Rep ; 11(1): 796, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436972

RESUMO

The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We demonstrate a laser architecture based on coherent beam combination offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.

14.
Nature ; 589(7841): 310-314, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268896

RESUMO

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Bacterioclorofilas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cristalografia , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Hyphomicrobiaceae/enzimologia , Hyphomicrobiaceae/metabolismo , Lasers , Modelos Moleculares , Oxirredução/efeitos da radiação , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Prótons , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
15.
Opt Express ; 28(23): 34093-34103, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182886

RESUMO

Controlling the carrier envelope phase (CEP) in mode-locked lasers over practically long timescales is crucial for real-world applications in ultrafast optics and precision metrology. We present a hybrid solution that combines a feed-forward technique to stabilize the phase offset in fast timescales and a feedback technique that addresses slowly varying sources of interference and locking bandwidth limitations associated with gain media with long upper-state lifetimes. We experimentally realize the hybrid stabilization system in an Er:Yb:glass mode-locked laser and demonstrate 75 hours of stabilization with integrated phase noise of 14 mrad (1 Hz to 3 MHz), corresponding to around 11 as of carrier to envelope jitter. Additionally, we examine the impact of environmental factors, such as humidity and pressure, on the long-term stability and performance of the system.

16.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
17.
Nat Commun ; 11(1): 2157, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358535

RESUMO

When a molecule interacts with light, its electrons can absorb energy from the electromagnetic field by rapidly rearranging their positions. This constitutes the first step of photochemical and photophysical processes that include primary events in human vision and photosynthesis. Here, we report the direct measurement of the initial redistribution of electron density when the molecule 1,3-cyclohexadiene (CHD) is optically excited. Our experiments exploit the intense, ultrashort hard x-ray pulses of the Linac Coherent Light Source (LCLS) to map the change in electron density using ultrafast x-ray scattering. The nature of the excited electronic state is identified with excellent spatial resolution and in good agreement with theoretical predictions. The excited state electron density distributions are thus amenable to direct experimental observation.

18.
Phys Rev Lett ; 124(13): 134801, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302180

RESUMO

Microbunching instability (MBI) driven by beam collective effects is known to be detrimental to high-brightness storage rings, linacs, and free-electron lasers (FELs). One known way to suppress this instability is to induce a small amount of energy spread to an electron beam by a laser heater. The distribution of the induced energy spread greatly affects MBI suppression and can be controlled by shaping the transverse profile of the heater laser. Here, we present the first experimental demonstration of effective MBI suppression using a LG_{01} transverse laser mode and compare the improved results with respect to traditional Gaussian transverse laser mode at the Linac Coherent Light Source. The effects on MBI suppression are characterized by multiple downstream measurements, including longitudinal phase space analysis and coherent radiation spectroscopy. We also discuss the role of LG_{01} shaping in soft x-ray self-seeded FEL emission, one of the most advanced operation modes of a FEL for which controlled suppression of MBI is critical.

19.
IUCrJ ; 7(Pt 2): 306-323, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148858

RESUMO

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.

20.
Opt Lett ; 44(22): 5610-5613, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730119

RESUMO

Few-cycle pulsed laser technology highlights the need for control and stabilization of the carrier-envelope phase (CEP) for applications requiring shot-to-shot timing and phase consistency. This general requirement has been achieved successfully in a number of free-space and fiber lasers via feedback and feed-forward (FF) methods. Expanding on existing results, we demonstrate CEP stabilization through the FF method applied to a SESAM mode-locked Er:Yb:glass laser at 1.55 µm with a measured ultralow timing jitter of 2.9 as (1-3 MHz) and long-term stabilization over a duration of 8 h. Single-digit attosecond stabilization at telecom wavelengths opens a new direction in applications requiring ultra-stable frequency and time precision such as high-resolution spectroscopy and fiber timing networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...