Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441423

RESUMO

A noncollinear optical parametric amplifier (NOPA) can produce few-cycle femtosecond laser pulses that are ideally suited for time-resolved optical spectroscopy measurements. However, the nonlinear-optical process giving rise to ultrabroadband pulses is susceptible to spatiotemporal dispersion problems. Here, we detail refinements, including chirped-pulse amplification (CPA) and pulse-front matching (PFM), that minimize spatiotemporal dispersion and thereby improve the properties of ultrabroadband pulses produced by a NOPA. The description includes a rationale behind the choices of optical and optomechanical components, as well as assessment protocols. We demonstrate these techniques using a 1 kHz, second-harmonic Ti:sapphire pump configuration, which produces ∼5-fs duration pulses that span from about 500 to 800 nm with a bandwidth of about 200 THz. To demonstrate the utility of the CPA-PFM-NOPA, we measure vibrational quantum beats in the transient-absorption spectrum of methylene blue, a dye molecule that serves as a reference standard.

2.
Angew Chem Int Ed Engl ; 59(49): 22140-22149, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245600

RESUMO

Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica , Tetrazóis/química , Reação de Cicloadição , Corantes Fluorescentes/síntese química , Estrutura Molecular , Tetrazóis/síntese química
3.
Nat Chem ; 12(12): 1157-1164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199886

RESUMO

Delocalized Frenkel excitons-coherently shared excitations among chromophores-are responsible for the remarkable efficiency of supramolecular light-harvesting assemblies within photosynthetic organisms. The translation of nature's design principles to applications in optoelectronic devices has been limited by the fragility of the supramolecular structures used and the delicate nature of Frenkel excitons, particularly under mildly changing solvent conditions and elevated temperatures and upon deposition onto solid substrates. Here, we overcome those functionalization barriers through composition of stable supramolecular light-harvesting nanotubes enabled by tunable (~4.3-4.9 nm), uniform (±0.3 nm) cage-like scaffolds. High-resolution cryogenic electron microscopy, combined with scanning electron microscopy, broadband femtosecond transient absorption spectroscopy and near-field scanning optical microscopy revealed that excitons within the cage-like scaffolds are robust, even under extreme heat stress, and control over nanocomposite dimensions is maintained on solid substrates. Our bio-inspired nanocomposites provide a general framework for the development of next-generation organic devices made from stable supramolecular materials.

4.
J Phys Chem A ; 123(24): 5072-5080, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31117484

RESUMO

The design and optimization of fluorescent labels and fluorogenic probes rely heavily on their ability to distinguish among multiple competing fluorescence quenching mechanisms. Cresyl violet, a member of the 1,4-oxazine family of dyes, has generally been regarded as an exemplary fluorescent probe; however, recent ultrafast experiments revealed an excited-state decay kinetic of 1.2 ps, suggesting the presence of a transient photochemical state. Here, we present ultrabroadband two-dimensional electronic spectroscopy (2D ES) measurements of cresyl violet in the presence of the fluorescence quenching agent 3,6-di(2-hydroxyethyl)-1,2,4,5-tetrazine. The broad spectral bandwidth allows for the evaluation of multiple fluorescence quenching mechanisms such as exciton formation, photoinduced electron transfer, resonance energy transfer, and excited-state proton transfer. The 2D electronic spectra in the presence and absence of the quencher suggest that excited-state proton transfer drives the system's excited-state dynamics and leads to a cresyl violet tautomer involved in fluorescence quenching. The invocation of the tautomeric form of cresyl violet neatly resolves longstanding inconsistencies in the photophysics of oxazine dyes more generally. Although still under development, the application of ultrabroadband 2D ES to a molecular system represents a compelling demonstration of the technique's future role in the study of photochemical reaction mechanisms.

5.
J Phys Chem Lett ; 8(6): 1315-1322, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28266859

RESUMO

Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr6]2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr6]2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.

6.
J Chem Phys ; 146(8): 084311, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249416

RESUMO

The coupling between electronic and nuclear variables is a key consideration in molecular dynamics and spectroscopy. However, simulations that include detailed vibronic coupling terms are challenging to perform, and thus a variety of approximations can be used to model and interpret experimental results. Recent work shows that these simplified models can be inadequate. It is therefore important to understand spectroscopic signals that can identify failures of those approximations. Here we use an extended response-function method to simulate coherent three-dimensional electronic spectroscopy (3D ES) and study the sensitivity of this method to the breakdown of the Franck-Condon approximation. The simulations include a coordinate-dependent transition dipole operator that produces nodes, phase shifts, and peak patterns in 3D ES that can be used to identify Herzberg-Teller coupling. Guided by the simulation results, we interpret measurements on a molecular aggregate.

7.
J Phys Chem Lett ; 7(1): 14-9, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26647278

RESUMO

Conical intersections are molecular configurations at which adiabatic potential-energy surfaces touch. They are predicted to be ubiquitous, yet condensed-phase experiments have focused on the few systems with clear spectroscopic signatures of negligible fluorescence, high photoactivity, or femtosecond electronic kinetics. Although rare, these signatures have become diagnostic for conical intersections. Here we detect a coherent surface-crossing event nearly two picoseconds after optical excitation in a highly fluorescent molecule that has no photoactivity and nanosecond electronic kinetics. Time-frequency analysis of high-sensitivity measurements acquired using sub-8 fs pulses reveals phase shifts of the signal due to branching of the wavepacket through a conical intersection. The time-frequency analysis methodology demonstrated here on a model compound will enable studies of conical intersections in molecules that do not exhibit their diagnostic signatures. Improving the ability to detect conical intersections will enrich the understanding of their mechanistic role in molecular photochemistry.

8.
J Chem Phys ; 143(16): 164203, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520506

RESUMO

Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...