Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(5): 978-987, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799664

RESUMO

Glycoconjugate vaccines so far licensed are generally composed of a native or size-reduced capsular polysaccharide conjugated to carrier proteins. Detailed information on the structural requirements necessary for CPS recognition is becoming the key to accelerating the development of next-generation improved glycoconjugate vaccines. Structural glycobiology studies using oligosaccharides (OS) complexed with functional monoclonal antibodies represent a powerful tool for gaining information on CPS immunological determinants at the atomic level. Herein, the minimal structural epitope of Haemophilus influenzae type b (Hib) CPS recognized by a functional human monoclonal antibody (hmAb) is reported. Short and well-defined Hib oligosaccharides originating from the depolymerization of the native CPS have been used to elucidate saccharide-mAb interactions by using a multidisciplinary approach combining surface plasmon resonance (SPR), saturation transfer difference-nanomagnetic resonance (STD-NMR), and X-ray crystallography. Our study demonstrates that the minimal structural epitope of Hib is comprised within two repeating units (RUs) where ribose and ribitol are directly engaged in the hmAb interaction, and the binding pocket fully accommodates two RUs without any additional involvement of a third one. Understanding saccharide antigen structural characteristics can provide the basis for the design of innovative glycoconjugate vaccines based on alternative technologies, such as synthetic or enzymatic approaches.

2.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612547

RESUMO

Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.


Assuntos
Anti-Infecciosos , Nanopartículas , Animais , Camundongos , Glicoconjugados , Ferritinas , Oligossacarídeos
3.
Sci Data ; 11(1): 189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347012

RESUMO

QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.

5.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803013

RESUMO

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

6.
Glycoconj J ; 40(2): 135-148, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652051

RESUMO

Multivalent vaccines addressing an increasing number of Streptococcus pneumoniae types (7-, 10-, 13-, 15-, 20-valent) have been licensed over the last 22 years. The use of polysaccharide-protein conjugate vaccines has been pivotal in reducing the incidence of invasive pneumococcal disease despite the emergence of non-vaccine serotypes. Notwithstanding its undoubtable success, some weaknesses have called for continuous improvement of pneumococcal vaccination. For instance, despite their inclusion in pneumococcal conjugate vaccines, there are challenges associated with some serotypes. In particular, Streptococcus pneumoniae type 3 remains a major cause of invasive pneumococcal disease in several countries.Here a deep revision of the strengths and weaknesses of the licensed pneumococcal conjugate vaccines and other vaccine candidates currently in clinical development is reported.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Humanos , Vacinas Pneumocócicas/uso terapêutico , Streptococcus pneumoniae , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/epidemiologia , Vacinação , Vacinas Conjugadas/uso terapêutico , Anticorpos Antibacterianos
7.
Sci Rep ; 12(1): 10676, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739212

RESUMO

Studying faults capable of releasing moderate-to-strong earthquakes is fundamental for seismic hazard studies, especially in a territory that was subject to the strongest peninsular Italy earthquake (1857, Mw 7.1) and hosting the largest European oil field on-land. Fieldwork-based observations in the Campania-Lucania area highlight a SSW-dipping ~ 65 km-long normal-oblique-segmented fault, showing evidence of recent activity and possibly responsible for the 1857 earthquake. It crosses the Maddalena ridge, linking separate Quaternary basins. Two seismic reflection profiles cross the fault trace where it is buried beneath the Val d'Agri Quaternary deposits. Similarities between fault-controlled small basins in the highest portion of the massifs in the study area and the neighboring 1980 Irpinia area (1980 earthquake, Mw 6.9) are interpreted as evidence of trans-ridge fault activity. Kinematic analyses and the stress field inversion provide a N032-trending near-horizontal s3-axis, the same computed in literature for the Irpinia area, highlighting a deviation from the ~N045-axis which characterizes most of the Apennines. This study demonstrates how detailed fieldwork, supported by geophysics and innovative data analysis techniques, can unravel unknown faults while giving a novel interpretation of the trans-ridge faults' style in controlling strong earthquakes, moving away from classical interpretations, and providing a helpful approach in similar contexts worldwide.

8.
Chem Sci ; 13(8): 2440-2449, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310500

RESUMO

The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood. In particular, the influence of the conjugation site and strategy on the immunogenic properties of the final glycoconjugate vaccine is the focus of intense research. Here, we present a comparison of two cysteine selective conjugation strategies, elucidating the impact of both modifications on the structural integrity of the carrier protein, as well as on the immunogenic properties of the resulting glycoconjugate vaccine candidates. Our work suggests that conjugation chemistries impairing structurally relevant elements of the protein carrier, such as disulfide bonds, can have a dramatic effect on protein immunogenicity.

9.
Sci Rep ; 12(1): 3172, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210512

RESUMO

Large magnitude earthquakes produce complex surface deformations, which are typically mapped by field geologists within the months following the mainshock. We present detailed maps of the surface deformation pattern produced by the M. Vettore Fault System during the October 2016 earthquakes in central Italy, derived from ALOS-2 SAR data, via DInSAR technique. On these maps, we trace a set of cross-sections to analyse the coseismic vertical displacement, essential to identify both surface fault ruptures and off-fault deformations. At a local scale, we identify a large number of surface ruptures, in agreement with those observed in the field. At a larger scale, the inferred coseismic deformation shows a typical long-wavelength convex curvature of the subsiding block, not directly recognizable in the field. The detection of deformation patterns from DInSAR technique can furnish important constraints on the activated fault segments, their spatial distribution and interaction soon after the seismic events. Thanks to the large availability of satellite SAR acquisitions, the proposed methodological approach can be potentially applied to worldwide earthquakes (according to the environmental characteristics of the sensed scene) to provide a wider and faster picture of surface ruptures. Thus, the derived information can be crucial for emergency management by civil protection and helpful to drive and support the geological field surveys during an ongoing seismic crisis.

10.
Pharmacol Ther ; 235: 108158, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35183590

RESUMO

Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Carboidratos , Humanos , Neoplasias/prevenção & controle , Polissacarídeos
11.
ACS Chem Biol ; 16(8): 1344-1349, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255482

RESUMO

Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Epitopos/metabolismo , Glicerofosfatos/metabolismo , Ácidos Teicoicos/metabolismo , Animais , Anticorpos Monoclonais Murinos/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Glicerofosfatos/química , Glicerofosfatos/imunologia , Camundongos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Ácidos Teicoicos/química , Ácidos Teicoicos/imunologia
13.
Nat Commun ; 11(1): 4434, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895393

RESUMO

Neisseria meningitidis serogroup A capsular polysaccharide (MenA CPS) consists of (1 → 6)-2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate repeating units, O-acetylated at position C3 or C4. Glycomimetics appear attractive to overcome the CPS intrinsic lability in physiological media, due to cleavage of the phosphodiester bridge, and to develop a stable vaccine with longer shelf life in liquid formulation. Here, we generate a series of non-acetylated carbaMenA oligomers which are proven more stable than the CPS. An octamer (DP8) inhibits the binding of a MenA specific bactericidal mAb and polyclonal serum to the CPS, and is selected for further in vivo testing. However, its CRM197 conjugate raises murine antibodies towards the non-acetylated CPS backbone, but not the natural acetylated form. Accordingly, random O-acetylation of the DP8 is performed, resulting in a structure (Ac-carbaMenA) showing improved inhibition of anti-MenA CPS antibody binding and, after conjugation to CRM197, eliciting anti-MenA protective murine antibodies, comparably to the vaccine benchmark.


Assuntos
Glicoconjugados/síntese química , Neisseria meningitidis Sorogrupo A/imunologia , Polissacarídeos Bacterianos/síntese química , Vacinas Conjugadas , Animais , Anticorpos Antibacterianos/análise , Anticorpos Neutralizantes/química , Cápsulas Bacterianas/imunologia , Biomimética/métodos , Glicoconjugados/imunologia , Camundongos , Neisseria meningitidis Sorogrupo A/química , Neisseria meningitidis Sorogrupo A/efeitos dos fármacos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/microbiologia
14.
MethodsX ; 7: 100942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551244

RESUMO

The well-known Toll like receptor 9 (TLR9) agonist CpG ODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, however its in vivo stability and potential systemic toxicity remain a concern. In an effort to overcome these issues, different strategies have been explored including conjugation of CpG ODN with proteins or encapsulation/adsorption of CpG ODN into/onto liposomes. Although these methods have resulted in enhanced immunopotency compared to co-administration of free CpG ODN and antigen, we believe that this effect could be further improved. Here, we designed a novel delivery system of CpG ODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate model protein with the CpG ODN TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) in a very high degree. The novel cationic liposomes-protein conjugate complex shared similar vesicle characteristics (size and charge) compared to free liposomes. The conjugation of CpG ODN to protein in conjunction with adsorption on cationic liposomes, could promote co-delivery leading to the induction of immune response at low antigen and CpG ODN doses.•The CpG ODN Toll-like receptor (TLR) 9 agonist was conjugated to protein antigens via thiol-maleimide chemistry.•Due to their negative charge, protein conjugates readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) resulting to the design of novel cationic liposomes-protein conjugate complexes.•The method is suited for the liposomal delivery of a variety of adjuvant-protein conjugates.

15.
Chemistry ; 26(31): 6944, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32390224

RESUMO

Invited for the cover of this issue is the group of Roberto Adamo at GlaxoSmithKline Research Center, Siena, and colleagues at The University of the Basque Country and Basque Research Technology Alliance. The image depicts a tactical plan with the different elements of the research as part of the team. Read the full text of the article at 10.1002/chem.202000284.


Assuntos
Polissacarídeos/síntese química , Streptococcus/química , Humanos , Polissacarídeos/química , Vacinas Sintéticas
16.
J Control Release ; 323: 125-137, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32247804

RESUMO

Although the well-known Toll like receptor 9 (TLR9) agonist CpGODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, its in vivo stability and potential systemic toxicity remain a concern. In an effort to circumvent these issues, different strategies have been employed to increase its stability, localise action and reduce dosage. These include conjugation of CpGODN with proteins or encapsulation/adsorption of CpGODN into/onto liposomes, and have resulted in enhanced immunopotency compared to co-administration of free CpGODN and antigen. Here, we designed a novel delivery system of CpGODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate the Group B Streptococcus (GBS) GBS67 protein antigen with the CpGODN TLR9 agonist. This treatment did not alter protein's ability to be recognised by specific antibodies or the CpGODN to function as a TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA). The novel cationic liposomes-protein conjugate complex (GBS67-CpGODN+L) shared similar vesicle characteristics (size and charge) compared to free liposomes but exhibited different structure and morphology. Following intramuscular immunisation, GBS67-CpGODN+L formed a vaccine depot at the injection site and induced a remarkable increase of functional immune responses against GBS compared to the simple co-administration of GBS67, CpGODN and liposomes. This work demonstrates that the conjugation of CpGODN to GBS67 in conjunction with adsorption on cationic liposomes, can promote co-delivery leading to the induction of a multifaceted immune response at low antigen and CpGODN doses. Our findings highlight the potential for harnessing the immunostimulatory properties of different adjuvants to develop more effective nanostructure-based vaccine platforms.


Assuntos
Lipossomos , Vacinas , Adjuvantes Imunológicos , Imunização , Nanotecnologia , Compostos de Amônio Quaternário
17.
Chemistry ; 26(31): 7018-7025, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32058627

RESUMO

Identification of glycan functional epitopes is of paramount importance for rational design of glycoconjugate vaccines. We recently mapped the structural epitope of the capsular polysaccharide from type III Group B Streptococcus (GBSIII), a major cause of invasive disease in newborns, by using a dimer fragment (composed of two pentasaccharide repeating units) obtained by depolymerization complexed with a protective mAb. Although reported data had suggested a highly complex epitope contained in a helical structure composed of more than four repeating units, we showed that such dimer conjugated to a carrier protein with a proper glycosylation degree elicited functional antibodies comparably to the full-length conjugated polysaccharide. Here, starting from the X-ray crystallographic structure of the polysaccharide fragment-mAb complex, we synthesized a hexasaccharide comprising exclusively the relevant positions involved in binding. Combining competitive surface plasmon resonance and saturation transfer difference NMR spectroscopy as well as in-silico modeling, we demonstrated that this synthetic glycan was recognized by the mAb similarly to the dimer. The hexasaccharide conjugated to CRM197 , a mutant of diphtheria toxin, elicited a robust functional immune response that was not inferior to the polysaccharide conjugate, indicating that it may suffice as a vaccine antigen. This is the first evidence of an X-ray crystallography-guided design of a synthetic carbohydrate-based conjugate vaccine.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Epitopos/química , Glicoconjugados/química , Polissacarídeos/imunologia , Streptococcus agalactiae/química , Streptococcus agalactiae/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Humanos , Vacinas Sintéticas
18.
Drug Discov Today Technol ; 35-36: 23-33, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33388125

RESUMO

Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (glycotopes), with focus on the highly complex structure of Group B Streptococcus type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.


Assuntos
Polissacarídeos Bacterianos/administração & dosagem , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus agalactiae/imunologia , Animais , Cristalografia por Raios X , Modelos Animais de Doenças , Desenho de Fármacos , Epitopos/administração & dosagem , Epitopos/imunologia , Epitopos/ultraestrutura , Glicoconjugados/administração & dosagem , Glicoconjugados/química , Glicoconjugados/imunologia , Humanos , Imunogenicidade da Vacina , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/ultraestrutura , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/síntese química , Vacinas Estreptocócicas/imunologia , Relação Estrutura-Atividade , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
19.
J Infect Dis ; 221(6): 943-947, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31641758

RESUMO

Recent structural studies demonstrated that the epitope recognized by a monoclonal antibody representative of the protective response against the type III group B Streptococcus polysaccharide was comprised within 2 of the repeating units that constitute the full-length native structure. In the current study, we took advantage of this discovery to design a novel vaccine based on multivalent presentation of the identified minimal epitope on a carrier protein. We show that highly glycosylated short oligosaccharide conjugates elicit functional immune responses comparable to those of the full-length native polysaccharide. The obtained results pave the way to the design of well-defined glycoconjugate vaccines based on short synthetic oligosaccharides.


Assuntos
Epitopos/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae , Animais , Configuração de Carboidratos , Epitopos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/imunologia
20.
Expert Rev Vaccines ; 18(9): 881-895, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31475596

RESUMO

Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.


Assuntos
Vacinas Bacterianas/imunologia , Desenho de Fármacos , Glicoconjugados/imunologia , Vacinas Conjugadas/imunologia , Animais , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Membrana Externa Bacteriana , Proteínas de Bactérias , Vacinas Bacterianas/genética , Glicoconjugados/genética , Humanos , Lipossomos , Polissacarídeos/imunologia , Vacinas Conjugadas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...