Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(5): 966-969, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628630

RESUMO

The synthesis of proteins by solid-phase chemical ligation (SPCL) suffers from the paucity of linkers that can be cleaved under mild conditions. Here, we deployed a spontaneous nickel-assisted cleavage (SNAC) tag, known to undergo spontaneous cleavage in the presence of nickel(II), as a linker for C-to-N SPCL.


Assuntos
Aminoácidos , Níquel , Aminoácidos/química , Peptídeos/química , Proteínas , Técnicas de Síntese em Fase Sólida
2.
Biomolecules ; 12(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625652

RESUMO

Despite continuous advances, anticancer therapy still faces several technical hurdles, such as selectivity on cellular and subcellular targets of therapeutics. Toward addressing these limitations, we have combined the use of proapoptotic peptides, trimethine cyanine dye, and folate to target the mitochondria of tumor cells. A series of proapoptotic peptides and their conjugates with a cyanine dye and/or folate were synthesized in the solid phase, and their toxicity in different human cell lines was assessed. Cyanine-bearing conjugates were found to be up to 100-fold more cytotoxic than the parent peptides and to localize in mitochondria. However, the addition of a folate motif did not enhance the potency or selectivity of the resulting conjugates toward tumor cells that overexpress folate receptor α. Furthermore, while dual-labeled constructs were also found to localize within the target organelle, they were not generally selective towards folate receptor α-positive cell lines in vitro.


Assuntos
Ácido Fólico , Quinolinas , Fenômenos Químicos , Receptor 1 de Folato , Ácido Fólico/farmacologia , Humanos , Peptídeos/farmacologia
3.
Chem Sci ; 11(23): 5881-5888, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32874509

RESUMO

Asparaginyl endopeptidases (AEPs) are ideal for peptide and protein labeling. However, because of the reaction reversibility, a large excess of labels or backbone modified substrates are needed. In turn, simple and cheap reagents can be used to label N-terminal cysteine, but its availability inherently limits the potential applications. Aiming to address these issues, we have created a chemo-enzymatic labeling system that exploits the substrate promiscuity of AEP with the facile chemical reaction between N-terminal cysteine and 2-formyl phenylboronic acid (FPBA). In this approach, AEP is used to ligate polypeptides with a Asn-Cys-Leu recognition sequence with counterparts possessing an N-terminal Gly-Leu. Instead of being a labeling reagent, the commercially available FPBA serves as a scavenger converting the byproduct Cys-Leu into an inert thiazolidine derivative. This consequently drives the AEP labeling reaction forward to product formation with a lower ratio of label to protein substrate. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP-ligation/FPBA-coupling system was further demonstrated by site-specifically labeling the N- or C-termini of various proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...