Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684295

RESUMO

Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM plant that can grow in warm, semi-arid, and arid regions. Here, we tested the effects of preconditioning treatments of water availability (100, 50, and 25% of soil field capacity, FC) on the response of A. vera to prolonged drought growing in the hyper-arid core of the Atacama Desert. We studied leaf biomass, biochemical traits, and photosynthetic traits to assess, at different intervals of time, the effects of the preconditioning treatments on the response of A. vera to seven months of water deprivation. As expected, prolonged drought has deleterious effects on plant growth (a decrease of 55-65% in leaf thickness) and photosynthesis (a decrease of 54-62% in Emax). There were differences in the morphophysiological responses to drought depending on the preconditioning treatment, the 50% FC pretreatment being the threshold to better withstand prolonged drought. A diurnal increase in the concentration of malic acid (20-30 mg mg-1) in the points where the dark respiration increased was observed, from which it can be inferred that A. vera switches its C3-CAM metabolism to a CAM idling mode. Strikingly, all A. vera plants stayed alive after seven months without irrigation. Possible mechanisms under an environmental context are discussed. Overall, because of a combination of morphophysiological traits, A. vera has the remarkable capacity to survive under severe and long-term drought, and further holistic research on this plant may serve to produce biotechnological solutions for crop production under the current scenario of climatic emergency.

2.
Phytochemistry ; 159: 90-101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30605853

RESUMO

The main polysaccharide of the gel present in the leaves of or Aloe vera Burm.F., (Aloe barbadensis Miller) a xerophytic crassulacean acid metabolism (CAM) plant, is an acetylated glucomannan named acemannan. This polysaccharide is responsible for the succulence of the plant, helping it to retain water. In this study we determined using polysaccharide analysis by carbohydrate gel electrophoresis (PACE) that the acemannan is a glucomannan without galactose side branches. We also investigated the expression of the gene responsible for acemannan backbone synthesis, encoding a glucomannan mannosyltransferase (GMMT, EC 2.4.1.32), since there are no previous reports on GMMT expression under water stress in general and specifically in Aloe vera. It was found by in silico analyses that the GMMT gene belongs to the cellulose synthase-like A type-9 (CSLA9) subfamily. Using RT-qPCR it was found that the expression of GMMT increased significantly in Aloe vera plants subjected to water stress. This expression correlates with an increase of endogenous ABA levels, suggesting that the gene expression could be regulated by ABA. To corroborate this hypothesis, exogenous ABA was applied to non-water-stressed plants, resulting in a significant increase of GMMT expression after 48 h of ABA treatment.


Assuntos
Ácido Abscísico/farmacologia , Aloe/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mananas/metabolismo , Metiltransferases/genética , Estresse Fisiológico , Água/metabolismo , Aloe/enzimologia , Aloe/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , DNA Complementar/genética , Secas , Eletroforese em Gel de Amido/métodos , Cromatografia Gasosa-Espectrometria de Massas , Metiltransferases/química , Metiltransferases/metabolismo , Homologia de Sequência de Aminoácidos
3.
J Agric Food Chem ; 65(46): 10029-10039, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29072072

RESUMO

The nutraceutical properties of Aloe vera have been attributed to a glucomannan known as acemannan. Recently information has been published about the presence of fructans in Aloe vera but there are no publications about acemannan and fructans as prebiotic compounds. This study investigated in vitro the prebiotic properties of these polysaccharides. Our results demonstrated that fructans from Aloe vera induced bacterial growth better than inulin (commercial FOS). Acemannan stimulated bacterial growth less than fructans, and as much as commercial FOS. Using qPCR to study the bacterial population of human feces fermented in a bioreactor simulating colon conditions, we found that fructans induce an increase in the population of Bifidobacterium spp. Fructans produced greater amounts of short chain fatty acids (SCFA), while the branched-chain fatty acids (BCFA) did not increase with these polysaccharides. Acemannan increased significantly acetate concentrations. Therefore, both Aloe vera polysaccharides have prebiotic potentials.


Assuntos
Aloe/química , Frutanos/metabolismo , Mananas/metabolismo , Extratos Vegetais/metabolismo , Prebióticos/análise , Aloe/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Frutanos/análise , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Mananas/análise , Extratos Vegetais/análise
4.
PLoS One ; 11(7): e0159819, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27454873

RESUMO

Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.


Assuntos
Aloe/química , Aloe/metabolismo , Frutanos/química , Frutanos/metabolismo , Estresse Fisiológico , Água , Carboidratos/química , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Molecules ; 21(6)2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27258240

RESUMO

Methyl jasmonate (MeJA) is a plant growth regulator belonging to the jasmonate family. It plays an important role as a possible airborne signaling molecule mediating intra- and inter-plant communications and modulating plant defense responses, including antioxidant systems. Most assessments of this compound have dealt with post-harvest fruit applications, demonstrating induced plant resistance against the detrimental impacts of storage (chilling injuries and pathogen attacks), enhancing secondary metabolites and antioxidant activity. On the other hand, the interactions between MeJA and other compounds or technological tools for enhancing antioxidant capacity and quality of fruits were also reviewed. The pleiotropic effects of MeJA have raisen numerous as-yet unanswered questions about its mode of action. The aim of this review was endeavored to clarify the role of MeJA on improving pre- and post-harvest fresh fruit quality and health properties. Interestingly, the influence of MeJA on human health will be also discussed.


Assuntos
Acetatos/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/metabolismo , Frutas/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/biossíntese
6.
Plant Cell Rep ; 32(2): 293-307, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23111788

RESUMO

KEY MESSAGE : The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C. Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT(50) of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40-45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.


Assuntos
Aclimatação , Aloe/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Ubiquitina/genética , Aloe/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , Desidratação , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de DNA , Ubiquitina/metabolismo
7.
J Photochem Photobiol B ; 92(2): 67-76, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18571934

RESUMO

The main aim of this research was to compare the photosynthetic responses of two species of Prosopis, Prosopis chilensis (algarrobo) and Prosopis tamarugo (tamarugo) subjected to heat and water stress, to determine how heat shock or water deficit, either individually or combined, affect the photosynthesis of these two species. The photosynthetic rates expressed as a function of photon flow density (PFD) were determined by the O(2) liberated, in seedlings of tamarugo and algarrobo subjected to two water potentials: -0.3 MPa and -2.5 MPa and to three temperatures: 25 degrees C, 35 degrees C and 40 degrees C. Light response curves were constructed to obtain light compensation and light saturation points, maximum photosynthetic rates, quantum yields and dark respiration rates. The photochemical efficiency as the F(v)/F(m) ratio and the amount of RUBISCO were also determined under heat shock, water deficit, and under the combined action of both stress. Photosynthetic rates at a light intensity higher than 500 micromole photons m(-2)s(-1) were not significantly different (P>0.05) between species when measured at 25 degrees C under the same water potential. The maximum photosynthetic rates decreased with temperature in both species and with water deficit in algarrobo. At 40 degrees C and -2.5 MPa, the photosynthetic rate of algarrobo fell to 72% of that of tamarugo. The quantum yield decreased in algarrobo with temperature and water deficit and it was reduced by 50% when the conditions were 40 degrees C and -2.5 MPa. Dark respiration increased by 62% respect to the control at 40 degrees C in tamarugo while remained unchanged in algarrobo. The photochemical efficiency decreased with both, high temperature and water deficit, without differences between species. RUBISCO content increased in algarrobo 35 degrees C. Water deficit reduced the amount of RUBISCO in both species. The results of this work support the conclusion that in both Prosopis species, the interaction between high temperature and water deficit affects photosynthesis responses greater than each individual stress, and that the interactive effect is more pronounce in algarrobo than in tamarugo.


Assuntos
Fotossíntese/fisiologia , Prosopis/fisiologia , Temperatura , Desidratação , Oxigênio/metabolismo , Prosopis/classificação , Prosopis/crescimento & desenvolvimento
8.
Tree Physiol ; 23(7): 443-52, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12670798

RESUMO

We determined changes in cell-wall peroxidase activities and isoform patterns in response to wounding in seedlings of Prosopis tamarugo Phil. (an endemic species of the Atacama Desert) and Prosopis chilensis (Mol.) Stuntz (a native species of central Chile), to assess tolerance to predation. In seedlings of both species, the maximal increase in peroxidase activity occurred 48 h after wounding, reaching three times the control value in P. tamarugo and twice the control value in P. chilensis. The activity of ionically bound cell-wall peroxidases increased only locally in wounded embryonic axes, whereas the activity of soluble peroxidases increased systemically in unwounded cotyledons. Analysis of ionic peroxidases by isoelectrofocusing revealed two groups of peroxidases in the cell walls of both species: four distinct acidic isoforms and a group of basic isoforms. In response to wounding, there was a large increase in activity of the acidic isoforms in P. tamarugo, whereas there was an increase in the activity of the basic isoforms in P. chilensis. In P. chilensis, the wound-induced increase in activity of the basic isoforms corresponded with one of the two isoforms detected in P. tamarugo prior to wounding. Experiments with protein and RNA synthesis inhibitors indicated that a preexisting basic peroxidase is activated in P. chilensis after wounding. Assays of ionically bound peroxidase activity with four different substrates corroborated the differences found in isoform patterns between species. In P. tamarugo, the largest increases in activity were found with ortho-phenylenediamine and ferulic acid as substrates, whereas in P. chilensis the largest increase in activity was found with guaiacol as substrate. Because the same basic cell-wall peroxidase that accumulated after wounding in P. chilensis was present in P. tamarugo prior to wounding, and the activity of acidic cell-wall peroxidases increased after wounding in P. tamarugo but not in P. chilensis, we conclude that P. tamarugo is more tolerant to wound stress than P. chilensis.


Assuntos
Parede Celular/enzimologia , Peroxidases/fisiologia , Prosopis/enzimologia , Plântula/enzimologia , Árvores/enzimologia , Parede Celular/fisiologia , Isoenzimas/fisiologia , Prosopis/fisiologia , Plântula/fisiologia , Árvores/fisiologia
9.
J Exp Bot ; 54(384): 901-11, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598561

RESUMO

Starch is the principal reserve of Araucaria araucana seeds, and it is hydrolysed during germination mainly by alpha-amylase. There are several alpha-amylase isoenzymes whose patterns change in the embryo and in the megagametophyte from the one observed in quiescent seeds (T(0)) to a different one observed 90 h after imbibition (T(90)). The objective of this research was to study the roles of two purified alpha-amylase isoenzymes by in vitro digestion of starch granules extracted from the tissues at two times of imbibition: one is abundant in quiescent seeds and the other is abundant after 90 h of imbibition. The isoenzymes digested the starch granules of their own stage of germination better, since the isoenzyme T(0) digested starch granules mainly from quiescent seeds, while the isoenzyme T(90) digested starch mainly at 90 h of imbibition. The sizes of the starch granule and the tissue from which these granules originated make a difference to digestion by the isoenzymes. Embryonic isoenzyme T(0) digested large embryonic starch granules better than small and medium-sized granules, and better than those isolated from megagametophytes. Similarly isoenzyme T(90) digested small embryonic starch granules better than medium-sized and large granules, and better than those isolated from megagametophytes. However, a mixture of partially purified megagametophytic isoenzymes T(0) and T(90) digested the megagametophytic granules better than those isolated from embryos. Studies of in vitro sequential digestion of starch granules with these isoenzymes corroborated their specificity. The isoenzyme T(90) digested starch granules previously digested by the isoenzyme T(0). This suggests that in vivo these two isoenzymes may act sequentially in starch granule digestion.


Assuntos
Germinação/fisiologia , Sementes/enzimologia , Amido/metabolismo , Traqueófitas/enzimologia , alfa-Amilases/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Isoenzimas/metabolismo , Microscopia Eletrônica de Varredura , Amido/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...