Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 21(23): 4596-4607, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739022

RESUMO

Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor-the fold-increase in electric field magnitude due to the presence of an insulator constriction-and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 µm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.


Assuntos
Técnicas Analíticas Microfluídicas , Eletricidade , Eletroforese , Dispositivos Lab-On-A-Chip , Microfluídica , Tamanho da Partícula
2.
Anal Chem ; 92(19): 12871-12879, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32894016

RESUMO

The classic theory of direct-current (DC) insulator-based dielectrophoresis (iDEP) considers that, in order to elicit particle trapping, dielectrophoretic (DEP) velocity counterbalances electrokinetic (EK) motion, that is, electrophoresis (EP) and electro-osmotic flow (EOF). However, the particle velocity DEP component requires empirical correction factors (sometimes as high as 600) to account for experimental observations, suggesting the need for a refined model. Here, we show that, when applied to particle suspensions, a high-magnitude DC uniform electric field induces nonlinear particle velocities, leading to particle flow reversal beyond a critical field magnitude, referred to as the EK equilibrium condition. We further demonstrate that this particle motion can be described through an exploratory induced-charge EP nonlinear model. The model predictions were validated under an insulator-based microfluidic platform demonstrating predictive particle trapping for three different particle sizes (with an estimation error < 10%, not using correction factors). Our findings suggest that particle motion and trapping in "DC-iDEP" devices are dominated by EP and EOF, rather than by DEP effects.

3.
Polymers (Basel) ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560281

RESUMO

Polymer solutions with different concentrations of SU-8 2002/poly(ethylene) glycol/tetrabutyl ammonium tetrafluoroborate (SU-8/PEO/TBATFB) were electrospun in a low-voltage near-field electrospinning platform (LVNFES) at different velocities. Their diameters were related to the concentration contents as well as to their Deborah (De) numbers, which describes the elasticity of the polymer solution under determined operating conditions. We found a direct correlation between the concentration of PEO/TBATFB, the De and the diameter of the fibers. Fibers with diameters as thin as 465 nm can be achieved for De ≈ 1.

4.
Electrophoresis ; 40(10): 1408-1416, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30883810

RESUMO

Insulator-based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non-uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode-based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom-built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Teóricos , Temperatura
5.
Anal Chem ; 90(7): 4310-4315, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29528220

RESUMO

Insulator-based dielectrophoresis (iDEP) is a microfluidic technique used for particle analysis in a wide array of applications. Significant efforts are dedicated to improve iDEP systems by reducing voltage requirements. This study assesses how the performance of an iDEP system, in terms of particle trapping, depends on the number of insulating obstacles longitudinally present in the microchannel. In analogy with Kirchhoff's loop rule, iDEP systems were analyzed as a series combination of electrical resistances, where the equivalent resistance of the post array is composed by a number of individual resistors (columns of insulating posts). It was predicted by the COMSOL model, and later confirmed by experimental results, that reducing the number of columns of insulating posts significantly affects the electric field distribution, decreasing the required voltage to dielectrophoretically trap particles within the post array. As an application, it was demonstrated that decreasing the number of columns in the post array allows for the dielectrophoretic trapping of nanometer-scale particles at voltages well below those reported in previous similar iDEP systems. These findings illustrate how the iDEP channel configuration can be customized for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA