Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(6): 1423-1436, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537002

RESUMO

Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing fire monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of fire monitoring using Earth observation data include the following: (1) pre-fire vegetation inventories, (2) active-fire monitoring, (3) post-fire assessment, and (4) multi-scale synthesis. We identify the challenges and opportunities associated with current approaches to fire monitoring, highlighting four case studies from North American boreal, montane, and grassland ecosystems. While the case studies are localized to these ecosystems and regional contexts, they provide insights for others experiencing similar monitoring challenges worldwide. The field of remote sensing is experiencing a rapid proliferation of new data sources, providing observations that can inform all aspects of our fire monitoring framework; however, significant challenges for meeting fire monitoring objectives remain. We identify future opportunities for data sharing and rapid co-development of information products using cloud computing that benefits from open-access Earth observation and other geospatial data layers.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas
2.
Sci Total Environ ; 826: 153971, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35183627

RESUMO

Canada has more lakes than any other country, making comprehensive monitoring a huge challenge. As more and more satellite data become readily available, and as faster data processing systems make massive satellite data operations possible, new opportunities exist to use remote sensing to develop comprehensive assessments of water quality at very large spatial scales. In this study, we use a published empirical algorithm to estimate Secchi depth from Landsat 8 reflectance data in order to estimate water clarity in lakes across southern Canada. Combined with ancillary information on lake morphological, hydrological, and watershed geological and landuse characteristics, we were able to assess broad spatial patterns in water clarity for the first time. Ecological zones, underlying geological substrate, and lake depth had particularly strong influences on clarity across the whole country. Lakes in western mountain ecozones had significantly clearer waters than those in the prairies and plains, while lakes in sedimentary rock formations tended to have lower clarity than lakes in intrusive rock. Deep lakes were significantly clearer than shallow lakes over most of the country. Water clarity was also significantly influenced by human impact (urbanization, agriculture, and industry) in the watershed, with most lakes in high impact areas having low clarity or very low clarity. Finally, we used in situ measured data to help interpret the underlying optical water column constituents influencing clarity across Canada, and found that chlorophyll-a, total suspended solids, and color dissolved organic matter all had strong but varying underlying effects on water clarity across different ecozones. This research provides an important step towards further research on the relationship between water column optical properties and the health and vulnerability status of lakes across the country.


Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Canadá , Monitoramento Ambiental , Humanos , Lagos/química , Qualidade da Água
3.
Sci Total Environ ; 695: 133668, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419692

RESUMO

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.

4.
PLoS One ; 12(2): e0169428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28146573

RESUMO

Ecological processes are increasingly well understood over smaller areas, yet information regarding interconnections and the hierarchical nature of ecosystems remains less studied and understood. Information on connectivity over large areas with high resolution source information provides for both local detail and regional context. The emerging capacity to apply circuit theory to create maps of omnidirectional connectivity provides an opportunity for improved and quantitative depictions of forest connectivity, supporting the formation and testing of hypotheses about the density of animal movement, ecosystem structure, and related links to natural and anthropogenic forces. In this research, our goal was to delineate regions where connectivity regimes are similar across the boreal region of Canada using new quantitative analyses for characterizing connectivity over large areas (e.g., millions of hectares). Utilizing the Earth Observation for Sustainable Development of forests (EOSD) circa 2000 Landsat-derived land-cover map, we created and analyzed a national-scale map of omnidirectional forest connectivity at 25m resolution over 10000 tiles of 625 km2 each, spanning the forested regions of Canada. Using image recognition software to detect corridors, pinch points, and barriers to movements at multiple spatial scales in each tile, we developed a simple measure of the structural complexity of connectivity patterns in omnidirectional connectivity maps. We then mapped the Circuitscape resistance distance measure and used it in conjunction with the complexity data to study connectivity characteristics in each forested ecozone. Ecozone boundaries masked substantial systematic patterns in connectivity characteristics that are uncovered using a new classification of connectivity patterns that revealed six clear groups of forest connectivity patterns found in Canada. The resulting maps allow exploration of omnidirectional forest connectivity patterns at full resolution while permitting quantitative analyses of connectivity over broad areas, informing modeling, planning and monitoring efforts.


Assuntos
Ecologia , Ecossistema , Florestas , Mapeamento Geográfico , Canadá , Simulação por Computador , Conservação dos Recursos Naturais , Monitoramento Ambiental , Processamento de Imagem Assistida por Computador , Densidade Demográfica , Árvores
5.
PLoS One ; 9(1): e84135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497918

RESUMO

Connectivity models are useful tools that improve the ability of researchers and managers to plan land use for conservation and preservation. Most connectivity models function in a point-to-point or patch-to-patch fashion, limiting their use for assessing connectivity over very large areas. In large or highly fragmented systems, there may be so many habitat patches of interest that assessing connectivity among all possible combinations is prohibitive. To overcome these conceptual and practical limitations, we hypothesized that minor adaptation of the Circuitscape model can allow the creation of omnidirectional connectivity maps illustrating flow paths and variations in the ease of travel across a large study area. We tested this hypothesis in a 24,300 km(2) study area centered on the Montérégie region near Montréal, Québec. We executed the circuit model in overlapping tiles covering the study region. Current was passed across the surface of each tile in orthogonal directions, and then the tiles were reassembled to create directional and omnidirectional maps of connectivity. The resulting mosaics provide a continuous view of connectivity in the entire study area at the full original resolution. We quantified differences between mosaics created using different tile and buffer sizes and developed a measure of the prominence of seams in mosaics formed with this approach. The mosaics clearly show variations in current flow driven by subtle aspects of landscape composition and configuration. Shown prominently in mosaics are pinch points, narrow corridors where organisms appear to be required to traverse when moving through the landscape. Using modest computational resources, these continuous, fine-scale maps of nearly unlimited size allow the identification of movement paths and barriers that affect connectivity. This effort develops a powerful new application of circuit models by pinpointing areas of importance for conservation, broadening the potential for addressing intriguing questions about resource use, animal distribution, and movement.


Assuntos
Conservação dos Recursos Naturais , Animais , Ecossistema , Agricultura Florestal , Mapeamento Geográfico , Modelos Teóricos , Dispersão Vegetal , Quebeque
6.
Environ Manage ; 49(1): 163-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22109729

RESUMO

Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.


Assuntos
Árvores , Canadá , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Sistemas de Informação Geográfica , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...