Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009432

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite available therapeutic interventions, it is very difficult to treat, and a cure is not yet available. The intra-tumoral GBM heterogeneity is a crucial factor contributing to poor clinical outcomes. GBM derives from a small heterogeneous population of cancer stem cells (CSCs). In cancer tissue, CSCs are concentrated within the so-called niches, where they progress from a slowly proliferating phase. CSCs, as most tumor cells, release extracellular vesicles (EVs) into the surrounding microenvironment. To explore the role of EVs in CSCs and GBM tumor cells, we investigated the miRNA and protein content of the small EVs (sEVs) secreted by two GBM-established cell lines and by GBM primary CSCs using omics analysis. Our data indicate that GBM-sEVs are selectively enriched for miRNAs that are known to display tumor suppressor activity, while their protein cargo is enriched for oncoproteins and tumor-associated proteins. Conversely, among the most up-regulated miRNAs in CSC-sEVs, we also found pro-tumor miRNAs and proteins related to stemness, cell proliferation, and apoptosis. Collectively, our findings support the hypothesis that sEVs selectively incorporate different miRNAs and proteins belonging both to fundamental processes (e.g., cell proliferation, cell death, stemness) as well as to more specialized ones (e.g., EMT, membrane docking, cell junction organization, ncRNA processing).

2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563013

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.


Assuntos
Distrofia Miotônica , Edição de Genes , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
3.
Mol Ther Nucleic Acids ; 27: 184-199, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976437

RESUMO

CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3' untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.

4.
Comput Struct Biotechnol J ; 19: 51-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33363709

RESUMO

Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.

5.
Radiol Med ; 126(2): 264-276, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32557107

RESUMO

Magnetic resonance imaging (MRI) plays a leading role in the non-invasive evaluation of bone marrow (BM). Normal BM pattern depends on the ratio and distribution of yellow and red marrow, which are subject to changes with age, pathologies, and treatments. Neonates show almost entirely red marrow. Over time, yellow marrow conversion takes place with a characteristic sequence leading to a red marrow persistence in proximal metaphyses of long bones. In adults, normal BM is composed of both red (40% water, 40% fat) and yellow marrow (15% water, 80% fat). Due to the higher content of fat, yellow marrow normally appears hyperintense on T1-weighted (T1w) fast spin echo (FSE) sequences and hypo-/iso-intense in short tau inversion recovery (STIR) T2-weighted (T2w); red marrow appears slightly hyperintense in T1w FSE and hyper-/iso-intense in STIR T2w. Pathologic BM has reduced fat and increased water percentages, resulting hypointense in T1w FSE and hyperintense in STIR T2w. In oncologic patients, BM MRI signal largely depends on the treatment (irradiation and/or chemotherapy) and its timing. BM fat and water amount and location in normal red/yellow and pathologic marrow are responsible for different signals in MRI sequences whose knowledge by radiologists may help to differentiate between normal and pathologic findings. Our aim was to discuss and illustrate the MRI of BM physiologic conversion and pathologic reconversion occurring in malignancies and after treatments in cancer patients.


Assuntos
Doenças da Medula Óssea/diagnóstico por imagem , Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Medula Óssea/patologia , Medula Óssea/fisiologia , Doenças da Medula Óssea/patologia , Humanos
6.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575666

RESUMO

The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.

7.
Sci Rep ; 9(1): 19623, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873117

RESUMO

Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.


Assuntos
Diferenciação Celular , Cerebelo/metabolismo , Proteínas Hedgehog , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Receptor Smoothened , Animais , Cerebelo/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
8.
Cancers (Basel) ; 11(2)2019 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-30691222

RESUMO

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy.

9.
Int J Mol Sci ; 19(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400273

RESUMO

Circular RNAs (circRNAs) are a class of RNA produced during pre-mRNA splicing that are emerging as new members of the gene regulatory network. In addition to being spliced in a linear fashion, exons of pre-mRNAs can be circularized by use of the 3' acceptor splice site of upstream exons, leading to the formation of circular RNA species. In this way, genetic information can be re-organized, increasing gene expression potential. Expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across eukaryotes. The importance of circRNAs in gene regulation is now beginning to be recognized and some putative functions have been assigned to them, such as the sequestration of microRNAs or proteins, the modulation of transcription, the interference with splicing, and translation of small proteins. In accordance with an important role in normal cell biology, circRNA deregulation has been reported to be associated with diseases. Recent evidence demonstrated that circRNAs are highly expressed in striated muscle tissue, both skeletal and cardiac, that is also one of the body tissue showing the highest levels of alternative splicing. Moreover, initial studies revealed altered circRNA expression in diseases involving striated muscle, suggesting important functions of these molecules in the pathogenetic mechanisms of both heart and skeletal muscle diseases. The recent findings in this field will be described and discussed.


Assuntos
Processamento Alternativo , Doenças Cardiovasculares/genética , Músculo Estriado/fisiologia , Distrofia Muscular de Duchenne/genética , RNA/genética , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Éxons , Redes Reguladoras de Genes , Humanos , Íntrons , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Biossíntese de Proteínas , RNA/classificação , RNA/metabolismo , Sítios de Splice de RNA , RNA Circular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
10.
Cell Death Dis ; 9(9): 895, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166519

RESUMO

MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.


Assuntos
Proteína Homóloga a MRE11/antagonistas & inibidores , Proteína Homóloga a MRE11/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Pirimidinonas/farmacologia , Tionas/farmacologia , Células 3T3 , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/patologia , Prognóstico , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Death Dis ; 9(7): 729, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955039

RESUMO

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2.


Assuntos
Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Distrofia Miotônica/genética , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Humanos , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
12.
Mol Ther Nucleic Acids ; 9: 337-348, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246312

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3' untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.

13.
Oncotarget ; 8(61): 103340-103363, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262566

RESUMO

Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used wet and in silico approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines. Interestingly, intermediate/hybrid EMT phenotypes, a collective cell migration and increased stem-like ability associate to resistance to the epidermal growth factor receptor inhibitor, erlotinib, in HCC827 derived cell lines. Moreover, the use of three complementary approaches for gene expression analysis supported the identification of a small EMT-related gene list, which may have otherwise been overlooked by standard stand-alone methods for gene expression analysis.

14.
PLoS One ; 10(11): e0143333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580964

RESUMO

Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30-40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Amplificação de Genes , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Sequência de Bases , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Mutação/genética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Resultado do Tratamento
15.
Dev Cell ; 35(1): 21-35, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460945

RESUMO

Developmental Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs), and its aberrant activation is a leading cause of medulloblastoma. We show here that Hedgehog promotes polyamine biosynthesis in GCPs by engaging a non-canonical axis leading to the translation of ornithine decarboxylase (ODC). This process is governed by AMPK, which phosphorylates threonine 173 of the zinc finger protein CNBP in response to Hedgehog activation. Phosphorylated CNBP increases its association with Sufu, followed by CNBP stabilization, ODC translation, and polyamine biosynthesis. Notably, CNBP, ODC, and polyamines are elevated in Hedgehog-dependent medulloblastoma, and genetic or pharmacological inhibition of this axis efficiently blocks Hedgehog-dependent proliferation of medulloblastoma cells in vitro and in vivo. Together, these data illustrate an auxiliary mechanism of metabolic control by a morphogenic pathway with relevant implications in development and cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Neurônios/citologia , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Apoptose , Western Blotting , Células Cultivadas , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Imunoprecipitação , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Neurônios/metabolismo , Ornitina Descarboxilase/genética , Fosforilação , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Res Int ; 2014: 503634, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24729974

RESUMO

The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.


Assuntos
Predisposição Genética para Doença/genética , Modelos Genéticos , Proteínas Musculares/genética , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , RNA não Traduzido/genética , Animais , Humanos
17.
Cell Cycle ; 13(3): 434-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24275942

RESUMO

CCHC-type zinc finger nucleic acid binding protein (CNBP) is a small conserved protein, which plays a key role in development and disease. Studies in animal models have shown that the absence of CNBP results in severe developmental defects that have been mostly attributed to its ability to regulate c-myc mRNA expression. Functionally, CNBP binds single-stranded nucleic acids and acts as a molecular chaperone, thus regulating both transcription and translation.   In this work we report that in Drosophila melanogaster, CNBP is an essential gene, whose absence causes early embryonic lethality. In contrast to what observed in other species, ablation of CNBP does not affect dMyc mRNA expression, whereas the protein levels are markedly reduced. We demonstrate for the first time that dCNBP regulates dMyc translation through an IRES-dependent mechanism, and that knockdown of dCNBP in the wing territory causes a general reduction of wing size, in keeping with the reported role of dMyc in this region. Consistently, reintroduction of dMyc in CNBP-deficient wing imaginal discs rescues the wing size, further supporting a key role of the CNBP-Myc axis in this context. Collectively, these data show a previously uncharacterized mechanism, whereby, by regulating dMyc IRES-dependent translation, CNBP controls Drosophila wing development. These results may have relevant implications in other species and in pathophysiological conditions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Polirribossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células HEK293 , Humanos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dados de Sequência Molecular , Proteínas de Ligação a RNA/genética
18.
PLoS One ; 7(11): e49139, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152863

RESUMO

MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.


Assuntos
Apoptose , Galectina 3/metabolismo , Imidazóis/farmacologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Piperazinas/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Dano ao DNA , Galectina 3/genética , Amplificação de Genes , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
19.
PLoS One ; 4(10): e7607, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19859555

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. CONCLUSIONS/SIGNIFICANCE: miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling skeletal muscle differentiation and maintenance.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Músculo Esquelético/metabolismo , Mioblastos/citologia , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Camundongos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Desenvolvimento Muscular , Fenótipo , Codorniz
20.
J Biol Chem ; 278(37): 35145-51, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12840030

RESUMO

La is an abundant, mostly nuclear, RNA-binding protein that interacts with regions rich in pyrimidines. In the nucleus it has a role in the metabolism of several small RNAs. A number of studies, however, indicate that La protein is also implicated in cytoplasmic functions such as translation. The association of La in vivo with endogenous mRNAs engaged with polysomes would support this role, but this point has never been addressed yet. Terminal oligopyrimidine (TOP) mRNAs, which code for ribosomal proteins and other components of the translational apparatus, bear a TOP stretch at the 5' end, which is necessary for the regulation of their translation. La protein can bind the TOP sequence in vitro and activates TOP mRNA translation in vivo. Here we have quantified La protein in the cytoplasm of Xenopus oocytes and embryo cells and have shown in embryo cells that it is associated with actively translating polysomes. Disruption of polysomes by EDTA treatment displaces La in messenger ribonucleoprotein complexes sedimenting at 40-60 S. The results of polysome treatment with either low concentrations of micrococcal nuclease or with high concentrations of salt indicate, respectively, that La association with polysomes is mediated by mRNA and that it is not an integral component of ribosomes. Moreover, the analysis of messenger ribonucleoprotein complexes dissociated from translating polysomes shows that La protein associates with TOP mRNAs in vivo when they are translated, in line with a positive role of La in the translation of this class of mRNAs previously observed in cultured cells.


Assuntos
Oócitos/fisiologia , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Animais , Autoantígenos , Sequência de Bases , Primers do DNA , Ácido Edético/farmacologia , Embrião não Mamífero/fisiologia , Feminino , Cinética , Dados de Sequência Molecular , Sequência de Oligopirimidina na Região 5' Terminal do RNA/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Xenopus laevis/embriologia , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...