Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2024, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479395

RESUMO

A tool can function as a body part yet not feel like one: Putting down a fork after dinner does not feel like losing a hand. However, studies show fake body-parts are embodied and experienced as parts of oneself. Typically, embodiment illusions have only been reported when the fake body-part visually resembles the real one. Here we reveal that participants can experience an illusion that a mechanical grabber, which looks scarcely like a hand, is part of their body. We found changes in three signatures of embodiment: the real hand's perceived location, the feeling that the grabber belonged to the body, and autonomic responses to visible threats to the grabber. These findings show that artificial objects can become embodied even though they bear little visual resemblance to the hand.

2.
Eur Surg Res ; 61(1): 34-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585673

RESUMO

INTRODUCTION: The advantages of the robotic approach in surgery are undisputed. However, during surgical training, how this technique influences the learning curve has not been described. We provide a tentative model for analyzing the learning curves associated with observation and active participation in learning different surgical techniques, using functional imaging. METHODS: Forty medical students were enrolled and assigned to 4 groups who underwent training in robotic (ROB), laparoscopic (LAP), or open (OPEN) surgery, and a control group that performed motor training without surgical instruments. Surgical/motor training included six 1-h sessions completed over 6 days of the same week. All subjects underwent functional magnetic resonance imaging (fMRI) scanning sessions, before and after surgical training during. RESULTS: Twenty-three participants completed the study. The 3 surgical groups exhibited different learning curves during training. The main effects of the day of training (p < 0.01) and the group (p < 0.01) as well as a significant interaction of day of training group (p < 0.01) were observed. The performance increased in the first 4 days, reaching a peak at day 4, when all groups were considered together. The OPEN group showed the best performance compared to all other groups (p < 0.04). The OPEN group showed a rapid improvement in performance, which peaked at day 4 and decreased on the last day. Similarly, the LAP group showed a steady increase in the number of exercises they completed, which continued for the entire training period and reached a peak on the last day. However, the participants training in ROB surgery, after a performance initially indistinguishable from that of the LAP group, had a dip in their performance, quickly followed by an improvement and reaching a plateau on day 4. fMRI analysis documented the different involvement of the cortical and subcortical areas based on the type of training. Surgical training modified the activation of some brain regions during both observation and the execution of tasks. CONCLUSIONS: Differences in the learning curves of the 3 surgical groups were noted. Functional brain activity represents an interesting starting point to guide training programs.


Assuntos
Encéfalo/fisiologia , Cirurgia Geral/educação , Curva de Aprendizado , Cirurgiões/educação , Adolescente , Encéfalo/diagnóstico por imagem , Feminino , Cirurgia Geral/métodos , Humanos , Laparoscopia/educação , Imageamento por Ressonância Magnética , Masculino , Procedimentos Cirúrgicos Robóticos/educação , Cirurgiões/psicologia , Adulto Jovem
3.
Sci Rep ; 9(1): 13191, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520003

RESUMO

Cortical body size representations are distorted in the adult, from low-level motor and sensory maps to higher levels multisensory and cognitive representations. Little is known about how such representations are built and evolve during infancy and childhood. Here we investigated how hand size is represented in typically developing children aged 6 to 10. Participants were asked to estimate their hand size using two different sensory modalities (visual or haptic). We found a distortion (underestimation) already present in the youngest children. Crucially, such distortion increases with age and regardless of the sensory modality used to access the representation. Finally, underestimation is specific for the body as no bias was found for object estimation. This study suggests that the brain does not keep up with the natural body growth. However, since motor behavior nor perception were impaired, the distortion seems functional and/or compensated for, for proper interaction with the external environment.


Assuntos
Imagem Corporal , Mãos , Criança , Feminino , Mãos/anatomia & histologia , Humanos , Masculino , Experimentação Humana não Terapêutica , Tamanho do Órgão , Impressão Tridimensional , Percepção Visual
4.
Front Psychol ; 10: 1681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379692

RESUMO

Successful interaction with objects in the peripersonal space requires that the information relative to current and upcoming positions of our body is continuously monitored and updated with respect to the location of target objects. Voluntary actions, for example, are known to induce an anticipatory remapping of the peri-hand space (PHS, i.e., the space near the acting hand) during the very early stages of the action chain: planning and initiating an object grasp increase the interference exerted by visual stimuli coming from the object on touches delivered to the grasping hand, thus allowing for hand-object position monitoring and guidance. Voluntarily grasping an object, though, is rarely performed in isolation. Grasping a candy, for example, is most typically followed by concatenated secondary action steps (bringing the candy to the mouth and swallowing it) that represent the agent's ultimate intention (to eat the candy). However, whether and when complex action chains remap the PHS remains unknown, just as whether remapping is conditional to goal achievability (e.g., candy-mouth fit). Here we asked these questions by assessing changes in visuo-tactile interference on the acting hand while participants had to grasp an object serving as a support for an elongated candy, and bring it toward their mouth. Depending on its orientation, the candy could potentially enter the participants' mouth (plausible goal), or not (implausible goal). We observed increased visuo-tactile interference at relatively late stages of the action chain, after the object had been grasped, and only when the action goal was plausible. These findings suggest that multisensory interactions during action execution depend upon the final aim and plausibility of complex goal-directed actions, and extend our knowledge about the role of peripersonal space in guiding goal-directed voluntary actions.

5.
Elife ; 82019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30717824

RESUMO

A key question in neuroscience is how cortical organisation relates to experience. Previously we showed that amputees experiencing highly vivid phantom sensations maintain cortical representation of their missing hand (Kikkert et al., 2016). Here, we examined the role of sensory hand experience on persistent hand representation by studying individuals with acquired and congenital hand loss. We used representational similarity analysis in primary somatosensory and motor cortex during missing and intact hand movements. We found that key aspects of acquired amputees' missing hand representation persisted, despite varying vividness of phantom sensations. In contrast, missing hand representation of congenital one-handers, who do not experience phantom sensations, was significantly reduced. Across acquired amputees, individuals' reported motor control over their phantom hand positively correlated with the extent to which their somatosensory hand representation was normally organised. We conclude that once cortical organisation is formed, it is remarkably persistent, despite long-term attenuation of peripheral signals.


Assuntos
Mãos , Córtex Motor/fisiologia , Membro Fantasma , Córtex Somatossensorial/fisiologia , Adulto , Amputação Cirúrgica , Feminino , Deformidades Congênitas da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Movimento
6.
J Neurophysiol ; 121(2): 563-573, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625001

RESUMO

The rubber hand illusion (RHI) paradigm experimentally produces an illusion of rubber hand ownership and arm shift by simultaneously stroking a rubber hand in view and a participant's visually occluded hand. It involves visual, tactile, and proprioceptive multisensory integration and activates multisensory areas in the brain, including the posterior parietal cortex (PPC). Multisensory inputs are transformed into outputs for motor control in association areas such as PPC. A behavioral study reported decreased motor performance after RHI. However, it remains unclear whether RHI modifies the interactions between sensory and motor systems and between PPC and the primary motor cortex (M1). We used transcranial magnetic stimulation (TMS) and examined the functional connections from the primary somatosensory and association cortices to M1 and from PPC to M1 during RHI. In experiment 1, short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) were measured before and immediately after a synchronous (RHI) or an asynchronous (control) condition. In experiment 2, PPC-M1 interaction was measured using two coils. We found that SAI and LAI were reduced in the synchronous condition compared with baseline, suggesting that RHI decreased somatosensory processing in the primary sensory and the association cortices projecting to M1. We also found that greater inhibitory PPC-M1 interaction was associated with stronger RHI assessed by questionnaire. Our findings suggest that RHI modulates both the early and late stages of processing of tactile afferent, which leads to altered M1 excitability by reducing the gain of somatosensory afferents to resolve conflicts among multisensory inputs. NEW & NOTEWORTHY Perception of one's own body parts involves integrating different sensory information and is important for motor control. We found decreased effects of cutaneous stimulation on motor cortical excitability during rubber hand illusion (RHI), which may reflect decreased gain of tactile input to resolve multisensory conflicts. RHI strength correlated with the degree of inhibitory posterior parietal cortex-motor cortex interaction, indicating that parietal-motor connection is involved in resolving sensory conflicts and body ownership during RHI.


Assuntos
Mãos/fisiologia , Ilusões , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensação
7.
J Cogn Neurosci ; 31(8): 1141-1154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30321094

RESUMO

Peripersonal space is a multisensory representation relying on the processing of tactile and visual stimuli presented on and close to different body parts. The most studied peripersonal space representation is perihand space (PHS), a highly plastic representation modulated following tool use and by the rapid approach of visual objects. Given these properties, PHS may serve different sensorimotor functions, including guidance of voluntary actions such as object grasping. Strong support for this hypothesis would derive from evidence that PHS plastic changes occur before the upcoming movement rather than after its initiation, yet to date, such evidence is scant. Here, we tested whether action-dependent modulation of PHS, behaviorally assessed via visuotactile perception, may occur before an overt movement as early as the action planning phase. To do so, we probed tactile and visuotactile perception at different time points before and during the grasping action. Results showed that visuotactile perception was more strongly affected during the planning phase (250 msec after vision of the target) than during a similarly static but earlier phase (50 msec after vision of the target). Visuotactile interaction was also enhanced at the onset of hand movement, and it further increased during subsequent phases of hand movement. Such a visuotactile interaction featured interference effects during all phases from action planning onward as well as a facilitation effect at the movement onset. These findings reveal that planning to grab an object strengthens the multisensory interaction of visual information from the target and somatosensory information from the hand. Such early updating of the visuotactile interaction reflects multisensory processes supporting motor planning of actions.


Assuntos
Espaço Pessoal , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
8.
eNeurologicalSci ; 8: 31-33, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29260033

RESUMO

BACKGROUND: The upgoing thumb sign has been frequently observed in patients with minor strokes and transient ischemic attacks as an indicator of brain involvement. We assessed the effect of primary motor cortex (M1) inhibition in the development of the upgoing thumb sign. METHODS: Used repetitive Transcranial Magnetic Stimulation (rTMS, 1 Hz frequency for 15 min, 1s ISI, 900 pulses) at 60% of resting motor threshold to inhibit the right or left primary motor cortex of 10 healthy individuals. Participants were examined before and after rTMS by a neurologist who was blind to the site of motor cortex inhibition. RESULTS: 10 neurological intact participants (5 women/5 men) were recruited for this study. 2 cases were excluded due to pre-existing possible thumb signs. After the inhibition of the primary motor cortex, in 6 subjects out of 8, we observed a thumb sign contralateral to the site of primary motor cortex inhibition. In one subject an ipsilateral thumbs sign was noted. In another case, we did not find an upgoing thumb sign. CONCLUSION: The upgoing thumb sign is a subtle neurological finding that may be related to the primary motor cortex or corticospinal pathways involvements.

9.
Front Hum Neurosci ; 10: 272, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378879

RESUMO

The ability of using a large variety of tools is important in our daily life. Behind human tool-use abilities lays the brain capacity to incorporate tools into the body representation for action (Body Schema, BS), thought to rely mainly on proprioceptive information. Here, we tested whether tool incorporation is possible in absence of proprioception by studying a patient with right upper-limb deafferentation. We adopted a paradigm sensitive to changes of the BS and analyzed the kinematics of free-hand movements before and after tool-use, in three sessions over a period of 2 years. In the first session, before tool-use, the kinematics of the deafferented hand was disrupted. Similarly, the first movements with the tool (a mechanical grabber elongating the arm by ~40 cm) showed an abnormal profile that tended to normalize at the end of the session. Subsequent free-hand movements were also normalized. At session 2, 6 months later, the patient exhibited normal free-hand kinematic profiles, additionally showing changes in grasping kinematics after tool-use, but no sign of tool incorporation. A follow-up 2 years later, further confirmed the normalized kinematic profile but the absence of tool incorporation. This first description of tool-use in absence of proprioception shows the fundamental role of proprioception in the update of the BS. These results provide an important further step in understanding human motor control and have implications for future development of rehabilitation programs for patients with sensory deficits.

10.
Cogn Neuropsychol ; 33(1-2): 82-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27315277

RESUMO

Over the last decades, scientists have questioned the origin of the exquisite human mastery of tools. Seminal studies in monkeys, healthy participants and brain-damaged patients have primarily focused on the plastic changes that tool-use induces on spatial representations. More recently, we focused on the modifications tool-use must exert on the sensorimotor system and highlighted plastic changes at the level of the body representation used by the brain to control our movements, i.e., the Body Schema. Evidence is emerging for tool-use to affect also more visually and conceptually based representations of the body, such as the Body Image. Here we offer a critical review of the way different tool-use paradigms have been, and should be, used to try disentangling the critical features that are responsible for tool incorporation into different body representations. We will conclude that tool-use may offer a very valuable means to investigate high-order body representations and their plasticity.


Assuntos
Imagem Corporal , Percepção Espacial/fisiologia , Humanos , Masculino
12.
Front Psychol ; 5: 492, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24910624

RESUMO

Tool-use has been shown to modify the way the brain represents the metrical characteristics of the effector controlling the tool. For example, the use of tools that elongate the physical length of the arm induces kinematic changes affecting selectively the transport component of subsequent free-hand movements. Although mental simulation of an action is known to involve -to a large extent- the same processes as those at play in overt motor execution, whether tool-use imagery can yield similar effects on the body representation remains unknown. Mentally simulated actions indeed elicit autonomic physiological responses and follow motor execution rules that are comparable to those associated with the correspondent overt performance. Therefore, here we investigated the effects of the mental simulation of actions performed with a tool on the body representation by studying subsequent free-hand movements. Subjects executed reach to grasp movements with their hand before and after an imagery task performed with either a tool elongating their arm length or, as a control, with their hand alone. Two main results were found: First, in agreement with previous studies, durations of imagined movements performed with the tool and the hand were similarly affected by task difficulty. Second, kinematics of free-hand movements was affected after tool-use imagery, but not hand-use imagery, in a way similar to that previously documented after actual tool-use. These findings constitute the first evidence that tool-use imagery is sufficient to affect the representation of the user's arm.

13.
Exp Brain Res ; 218(2): 259-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22349501

RESUMO

Along the evolutionary history, humans have reached a high level of sophistication in the way they interact with the environment. One important step in this process has been the introduction of tools, enabling humans to go beyond the boundaries of their physical possibilities. Here, we focus on some "low level" aspects of sensorimotor processing that highlight how tool-use plays a causal role in shaping body representations, an essential plastic feature for efficient motor control during development and skilful tool-use in the adult life. We assess the evidence supporting the hypothesis that tools are incorporated in body representation for action, which is the body schema, by critically reviewing some previous findings and providing new data from on-going work in our laboratory. In particular, we discuss several experiments that reveal the effects of tool-use both on the kinematics of hand movements and the localization of somatosensory stimuli on the body surface, as well as the conditions that are necessary for these effects to be manifested. We suggest that overall these findings speak in favour of genuine tool-use-dependent plasticity of the body representation for the control of action.


Assuntos
Movimento/fisiologia , Percepção/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Braço/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino
14.
Neuroreport ; 20(10): 913-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19512951

RESUMO

The portion of space that closely surrounds our body parts is termed peripersonal space, and it has been shown to be represented in the brain through multisensory processing systems. Here, we tested whether voluntary actions, such as grasping an object, may remap such multisensory spatial representation. Participants discriminated touches on the hand they used to grasp an object containing task-irrelevant visual distractors. Compared with a static condition, reach-to-grasp movements increased the interference exerted by visual distractors over tactile targets. This remapping of multisensory space was triggered by action onset and further enhanced in real time during the early action execution phase. Additional experiments showed that this phenomenon is hand-centred. These results provide the first evidence of a functional link between voluntary object-oriented actions and multisensory coding of the space around us.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Orientação/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adulto , Braço/inervação , Braço/fisiologia , Atenção/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Mãos/inervação , Humanos , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Estimulação Física , Tato/fisiologia , Percepção Visual/fisiologia , Volição/fisiologia , Adulto Jovem
16.
Brain Topogr ; 21(3-4): 252-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19387818

RESUMO

To sensibly interact with the environment, like when grasping objects and navigating through space, the brain needs to compute not only target- and environment-related inputs, but also the size and spatial location of the entire body as well as of its parts. The neuronal construction and dynamic updating throughout the entire life of this bodily representation, commonly termed body schema in the literature, appears essential for efficient motor control and skillful tool-use. Meanwhile, recent contributions to the study of spatial multisensory processing have identified the peripersonal space as a particular region surrounding the body that acts as an interface between the body and the environment, for defensive and/or purposeful actions toward objects. In addition, the peripersonal space features plastic properties following tool-use that largely overlap those originally ascribed to the body schema, and have been actually interpreted as reflecting changes in the body schema itself. Here we seek to provide operational definitions and neuronal bases for each of these concepts, questioning whether sufficient evidence exists for them to be considered as the two faces of the same coin.


Assuntos
Imagem Corporal , Orientação , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Tamanho Corporal/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Comportamento de Utilização de Ferramentas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...