Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38552317

RESUMO

OBJECTIVE: The vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a complex immune disorder consequence of somatic UBA1 variants. Most reported pathogenic UBA1 variants are missense or splice site mutations directly impairing the translational start site at p. Met41, with recent studies showing that these variants are frequent causes of recurrent inflammation in older individuals. Here we aimed to characterize a novel UBA1 variant found in two patients clinically presenting with VEXAS syndrome. METHODS: Patients' data were collected from direct assessments and from their medical charts. Genomics analyses were performed by both Sanger and amplicon-based deep sequencing, mRNA studies were performed by both cDNA subcloning and mRNA sequencing. RESULTS: We report a novel, somatic variant in a canonical splice site of the UBA1 gene (c.346-2A>G), which was identified in two unrelated adult male patients with late-onset, unexplained inflammatory manifestations including recurrent fever, Sweet syndrome-like neutrophilic dermatosis, and lung inflammation responsive only to glucocorticoids. RNA analysis from patients' samples demonstrated aberrant mRNA splicing leading to multiple in-frame transcripts, including a transcript retaining the full sequence of intron 4 and a different transcript with the deletion of the first 15 nucleotides of exon 5. CONCLUSION: Here we describe the abnormal UBA1 transcription as a consequence of the novel c.346-2A>G variant identified in two patients with clinical features compatible with VEXAS syndrome. Overall, these results further demonstrate the expanding spectrum of variants in UBA1 leading to pathology and support for a complete gene evaluation in those candidate patients for VEXAS syndrome.

2.
Cell Rep Med ; 4(8): 101160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586319

RESUMO

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe autoinflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1) gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activation of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is prominent in UBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are increased cytotoxicity and IFN-γ signaling in T cells. In VEXAS syndrome, both aberrant inflammation and myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.


Assuntos
Células-Tronco Hematopoéticas , Inflamação , Humanos , Proteólise , Diferenciação Celular , Inflamação/genética
3.
Acta Virol ; 66(3): 254-262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029090

RESUMO

Purple passion fruit is one of the most important fruit exports of Colombia, but its productivity is being compromised by the emergence of several viral diseases. High-throughput sequencing (HTS) surveys of viruses in purple passion fruit fields in the province of Antioquia suggested infection by a new member of the family Tymoviridae. In this work, we characterize the complete genome sequence of this virus, tentatively named purple passionfruit leaf deformation virus (PpLDV), and evaluate its distribution in Antioquia. PpLDV was assembled at high coverage in four datasets from different regions. The 6.1 kb genome of PpLDV encodes a single polyprotein with domains characteristic of the family Tymoviridae, contains a marafibox-like promoter and the 3'-UTR can fold into a tRNA-like secondary structure with a valine anti-codon. Phylogenetic analysis of the polyprotein revealed that PpLDV is a distinct member of the family Tymoviridae, more closely related to the genus Tymovirus and the unclassified Poinsettia mosaic virus (PnMV). The presence of PpLDV was confirmed by RT-qPCR and RT-PCR in samples from commercial purple passion fruit fields, plantlets and seed sprouts collected in Antioquia using primers designed in this study. Keywords: high-throughput sequencing; Marafivirus; Passifloraceae; plant virology; RT-qPCR; Tymovirus.


Assuntos
Passiflora , Tymoviridae , Colômbia , Frutas , Genoma Viral , Passiflora/genética , Filogenia , Poliproteínas/genética , Tymoviridae/genética
4.
Blood ; 140(13): 1496-1506, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35793467

RESUMO

Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.


Assuntos
Nucleotídeos , Enzimas Ativadoras de Ubiquitina , Códon de Iniciação , Humanos , Mutação , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitinação
7.
Mayo Clin Proc ; 96(10): 2653-2659, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34489099

RESUMO

The objective of this study is to describe the clinical features and outcomes of patients with the newly defined vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. Nine men with somatic mutations in the UBA1 gene were identified; the most frequent variant was p.Met41Thr (7 of 9, 78%). The median age at VEXAS diagnosis was 74 (67, 76.5) years, and patients had a median duration of symptoms for 4 years before diagnosis. Refractory constitutional symptoms (88%), ear and nose chondritis (55%), and inflammatory arthritis (55%) were common clinical features. Vasculitis was noted in 44%. All patients had significantly elevated inflammatory markers and macrocytic anemia. Thrombocytopenia was present in 66% at diagnosis of VEXAS. Eight patients had bone marrow biopsies performed. All bone marrows were hypercellular, and there was vacuolization of the erythroid (100%) or myeloid precursors (75%). Glucocorticoids attenuated symptoms at prednisone doses ≥20 mg per day, but no other immunosuppressive agent showed consistent long-term control of disease. One patient with coexisting plasma-cell myeloma received plasma-cell-directed therapy with improvement of the inflammatory response, which is a novel finding. In conclusion, VEXAS syndrome is a clinically heterogeneous, treatment-refractory inflammatory condition caused by somatic mutation of the UBA1 gene. Patients often present with overlapping rheumatologic manifestations and persistent hematologic abnormalities. As such, internists and subspecialists, including pathologists, should be aware of this condition to avert diagnostic delay, now that the etiology of this syndrome is known.


Assuntos
Inflamação/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Enzimas Ativadoras de Ubiquitina/genética , Idoso , Células Precursoras Eritroides/patologia , Doenças Genéticas Inatas , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Inflamação/genética , Masculino , Mutação , Síndromes Mielodisplásicas/genética , Células Mieloides/patologia , Vacúolos , Vasculite/genética
8.
Blood Adv ; 5(16): 3203-3215, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427584

RESUMO

Somatic mutations in UBA1 involving hematopoietic stem and myeloid cells have been reported in patients with the newly defined VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Here, we report clinical hematologic manifestations and unique bone marrow (BM) features in 16 patients with VEXAS. All patients were male and had a history of severe autoinflammatory and rheumatologic manifestations and a somatic UBA1 mutation (p.Met41). Ten patients had hematologic disorders: myelodysplastic syndrome (MDS; 6 of 16), multiple myeloma (2 of 16), monoclonal gammopathy of undetermined significance (2 of 16), and monoclonal B-cell lymphocytosis (2 of 16), and a few of those patients had 2 co-existing clonal processes. Although macrocytic anemia (100%) and lymphopenia (80%) were prevalent in all patients with VEXAS, thrombocytopenia and neutropenia were more common in patients with progression to MDS. All BMs in VEXAS patients had prominent cytoplasmic vacuoles in myeloid and erythroid precursors. In addition, most BMs were hypercellular with myeloid hyperplasia, erythroid hypoplasia, and varying degrees of dysplasia. All patients diagnosed with MDS were lower risk (low blast count, very good to intermediate cytogenetics) according to standard prognostic scoring with no known progression to leukemia. In addition, 10 of 16 patients had thrombotic events, including venous thromboembolism and arterial stroke. Although VEXAS presents symptomatically as a rheumatologic disease, morbidity and mortality are associated with progression to hematologic disease. Given the increased risk of developing MDS and multiple myeloma, surveillance for disease progression is important.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Síndromes Mielodisplásicas , Medula Óssea , Humanos , Masculino , Mutação
9.
Arthritis Rheumatol ; 73(10): 1886-1895, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33779074

RESUMO

OBJECTIVE: Somatic mutations in UBA1 cause a newly defined syndrome known as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome). More than 50% of patients currently identified as having VEXAS met diagnostic criteria for relapsing polychondritis (RP), but clinical features that characterize VEXAS within a cohort of patients with RP have not been defined. We undertook this study to define the prevalence of somatic mutations in UBA1 in patients with RP and to create an algorithm to identify patients with genetically confirmed VEXAS among those with RP. METHODS: Exome and targeted sequencing of UBA1 was performed in a prospective observational cohort of patients with RP. Clinical and immunologic characteristics of patients with RP were compared based on the presence or absence of UBA1 mutations. The random forest method was used to derive a clinical algorithm to identify patients with UBA1 mutations. RESULTS: Seven of 92 patients with RP (7.6%) had UBA1 mutations (referred to here as VEXAS-RP). Patients with VEXAS-RP were all male, were on average ≥45 years of age at disease onset, and commonly had fever, ear chondritis, skin involvement, deep vein thrombosis, and pulmonary infiltrates. No patient with VEXAS-RP had chondritis of the airways or costochondritis. Mortality was greater in VEXAS-RP than in RP (23% versus 4%; P = 0.029). Elevated acute-phase reactants and hematologic abnormalities (e.g., macrocytic anemia, thrombocytopenia, lymphopenia, multiple myeloma, myelodysplastic syndrome) were prevalent in VEXAS-RP. A decision tree algorithm based on male sex, a mean corpuscular volume >100 fl, and a platelet count <200 ×103 /µl differentiated VEXAS-RP from RP with 100% sensitivity and 96% specificity. CONCLUSION: Mutations in UBA1 were causal for disease in a subset of patients with RP. This subset of patients was defined by disease onset in the fifth decade of life or later, male sex, ear/nose chondritis, and hematologic abnormalities. Early identification is important in VEXAS given the associated high mortality rate.


Assuntos
Inflamação/genética , Policondrite Recidivante/genética , Enzimas Ativadoras de Ubiquitina/genética , Trombose Venosa/genética , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndrome
11.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
12.
PeerJ ; 8: e9567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995073

RESUMO

MicroRNAs (miRNAs) are short, non-coding, single-strand RNA molecules that act as regulators of gene expression in plants and animals. In 2012, the first evidence was found that plant miRNAs could enter the bloodstream through the digestive tract. Since then, there has been an ongoing discussion about whether miRNAs from the diet are transferred to blood, accumulate in tissues, and regulate gene expression. Different research groups have tried to replicate these findings, using both plant and animal sources. Here, we review the evidence for and against the transfer of diet-derived miRNAs from plants, meat, milk and exosome and their assimilation and putative molecular regulation role in the consuming organism. Some groups using both miRNAs from plant and animal sources have claimed success, whereas others have not shown transfer. In spite of the biological barriers that may limit miRNA transference, several diet-derived miRNAs can transfer into the circulating system and targets genes for transcription regulation, which adds arguments that miRNAs can be absorbed from the diet and target specific genes by regulating their expression. However, many other studies show that cross-kingdom transfer of exogenous miRNAs appears to be insignificant and not biologically relevant. The main source of controversy in plant studies is the lack of reproducibility of the findings. For meat-derived miRNAs, studies concluded that the miRNAs can survive the cooking process; nevertheless, our evidence shows that the bovine miRNAs are not transferred to human bloodstream. The most important contributions and promising evidence in this controversial field is the transference of milk miRNAs in exosomes and the finding that plant miRNAs in beebread regulate honeybee caste development, and cause similar changes when fed to Drosophila. MiRNAs encapsulated in exosomes ensure their stability and resistance in the harsh conditions presented in milk, bloodstream, and gastrointestinaltract to reinforce the idea of transference. Regardless of the model organism, the idea of source of miRNAs, or the approach-bioinformatics or in vivo-the issue of transfer of miRNAs from the diet remains in doubt. Our understanding of the cross-kingdom talk of miRNAs needs more research to study the transfer of "xenomiRs" from different food sources to complement and expand what we know so far regarding the interspecies transfer of miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...