Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1440662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136016

RESUMO

Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC. Methods: C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG. Histopathology, cytokine gene expression, and distribution of total Cx43 and its phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human heart samples obtained from subjects with CCC were submitted to immunofluorescence analysis. In vitro simulation of a pro-inflammatory microenvironment (IL-1ß, TNF, and IFN-γ) was performed in H9c2 cells and iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential duration, and Lucifer Yellow dye transfer. Results: Mice chronically infected with T. cruzi exhibited impaired cardiac function associated with increased inflammation, fibrosis and upregulated IL-1ß, TNF, and IFN-γ gene expression. Confocal microscopy revealed altered total Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-cadherin was observed in the intercalated discs of CCC mouse hearts compared to controls. Similar results were obtained in human CCC heart samples, which showed Cx43 distribution outside the intercalated discs. Stimulation of human iPSC-derived cardiomyocytes or H9c2 cells with IL-1ß, TNF, and IFN-γ induced alterations in Cx43 localization, reduced action potential duration and dye transfer between adjacent cells. Conclusion: Heart inflammation in CCC affects the distribution and phosphorylation pattern of Cx43, which may contribute to the generation of conduction disturbances in Chagas disease.


Assuntos
Cardiomiopatia Chagásica , Conexina 43 , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Conexina 43/metabolismo , Conexina 43/genética , Animais , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/patologia , Inflamação/metabolismo , Fosforilação , Masculino , Doença Crônica , Trypanosoma cruzi , Modelos Animais de Doenças , Linhagem Celular , Citocinas/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/parasitologia , Arritmias Cardíacas/imunologia , Feminino
2.
Front Cell Infect Microbiol ; 11: 765879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869068

RESUMO

Chagas disease is a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi. Chronic Chagas cardiomyopathy (CCC) is the most severe manifestation of the disease, developed by approximately 20-40% of patients and characterized by occurrence of arrhythmias, heart failure and death. Despite having more than 100 years of discovery, Chagas disease remains without an effective treatment, especially for patients with CCC. Since the pathogenesis of CCC depends on a parasite-driven systemic inflammatory profile that leads to cardiac tissue damage, the use of immunomodulators has become a rational alternative for the treatment of CCC. In this context, different classes of drugs, cell therapies with dendritic cells or stem cells and gene therapy have shown potential to modulate systemic inflammation and myocarditis in CCC models. Based on that, the present review provides an overview of current reports regarding the use of immunomodulatory agents in treatment of CCC, bringing the challenges and future directions in this field.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Cardiomiopatia Chagásica/terapia , Doença de Chagas/tratamento farmacológico , Doença Crônica , Humanos , Agentes de Imunomodulação , Imunomodulação
3.
Materials (Basel) ; 13(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937776

RESUMO

Titanium dioxide (TiO2) is manufactured worldwide as crystalline and amorphous forms for multiple applications, including tissue engineering, but our study proposes analyzing the impact of crystalline phases of TiO2 on Mesenchymal Stem Cells (MSCs). Several studies have already described the regenerative potential of MSCs and TiO2 has been used for bone regeneration. In this study, polydispersity index and sizes of TiO2 nanocrystals (NCs) were determined. Adipose tissue-derived Mesenchymal Stem Cells (AT-MSCs) were isolated and characterized in order to evaluate cellular viability and the internalization of nanocrystals (NCs). All of the assays were performed using the TiO2 NCs with 100% anatase (A), 91.6% anatase/9.4% rutile (AR), 64.6% rutile/35.4% anatase (RA), and 84.0% rutile/16% brookite (RB), submitted to several concentrations in 24-h treatments. Cellular localization of TiO2 NCs in the AT-MSCs was resolved by europium-doped NCs. Viability was significantly improved under the predominance of the rutile phase in NCs with localization restricted at the cytoplasm, suggesting that AR and RA NCs are not genotoxic and can be associated with most cellular activities and metabolic pathways, including glycolysis and cell division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA