Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983846

RESUMO

Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD-VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Escherichia coli/química , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Sistemas de Secreção Tipo IV/química , Xanthomonas/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
2.
Biophys J ; 119(2): 337-348, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32574558

RESUMO

The Na+/Ca2+ exchanger of Drosophila melanogaster, CALX, is the main Ca2+-extrusion mechanism in olfactory sensory neurons and photoreceptor cells. Na+/Ca2+ exchangers have two Ca2+ sensor domains, CBD1 and CBD2. In contrast to the mammalian homologs, CALX is inhibited by Ca2+ binding to CALX-CBD1, whereas CALX-CBD2 does not bind Ca2+ at physiological concentrations. CALX-CBD1 consists of a ß-sandwich and displays four Ca2+-binding sites at the tip of the domain. In this study, we used NMR spectroscopy and isothermal titration calorimetry (ITC) to investigate the cooperativity of Ca2+ binding to CALX-CBD1. We observed that this domain binds Ca2+ in the slow exchange regime at the NMR chemical shift timescale. Ca2+ binding restricts the dynamics in the Ca2+-binding region. Experiments of 15N chemical exchange saturation transfer and 15N R2 dispersion allowed the determination of Ca2+ dissociation rates (∼30 s-1). NMR titration curves of residues in the Ca2+-binding region were sigmoidal because of the contribution of chemical exchange to transverse magnetization relaxation rates, R2. Hence, a novel, to our knowledge, approach to analyze NMR titration curves was proposed. Ca2+-binding cooperativity was examined assuming two different stoichiometric binding models and using a Bayesian approach for data analysis. Fittings of NMR and ITC binding curves to the Hill model yielded nHill ∼2.9, near maximal cooperativity (nHill = 4). By assuming a stepwise model to interpret the ITC data, we found that the probability of binding from 2 up to 4 Ca2+ is approximately three orders of magnitude higher than that of binding a single Ca2+. Hence, four Ca2+ ions bind almost simultaneously to CALX-CBD1. Cooperative Ca2+ binding is key to enable this exchanger to efficiently respond to changes in the intracellular Ca2+ concentration in sensory neuronal cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Antiporters/metabolismo , Teorema de Bayes , Sítios de Ligação , Cálcio/metabolismo , Calorimetria , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Espectroscopia de Ressonância Magnética , Ligação Proteica , Trocador de Sódio e Cálcio/metabolismo
3.
Langmuir ; 29(51): 15778-86, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24308316

RESUMO

The interactions between the headgroups of n-alkyl glycoside (AG) and water molecules were studied by nuclear magnetic transverse relaxation times (T2) of the water protons before and beyond the micellization. Despite the low concentration of the surfactants (mM), their micellization induce strong effect on the T2 values of bulk water when the AG molecules self-aggregate into micelles. This is associated with the decreasing of the fraction of OH headgroups of AG to exchange protons with water molecules due to the OH headgroups intermolecular interactions of AG at the micelle surface. These findings support the computational results described in the literature, which indicate that the water hydrogen bonding to OH headgroups is perturbed at AG micelle surfaces.


Assuntos
Glicosídeos/química , Micelas , Água/química , Alquilação , Óxido de Deutério/química , Hidróxidos/química , Espectroscopia de Ressonância Magnética
4.
Carbohydr Res ; 353: 57-61, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22480785

RESUMO

The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water.


Assuntos
Carboidratos/química , Óxido de Deutério/química , Glucose/química , Solubilidade , Sacarose/química , Água/química , Xilose/química
5.
J Phys Chem B ; 112(37): 11669-78, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18717547

RESUMO

The partitioning behavior of pentacyanonitrosilmetallate complexes[Fe(CN) 5 NO] (2-), [Mn(CN) 5 NO] 3(-), and [Cr(CN) 5 NO] 3(-)has been studied in aqueous two-phase systems (ATPS) formed by adding poly(ethylene oxide) (PEO; 4000 g mol (-1)) to an aqueous salt solution (Li2 SO4, Na2 SO4, CuSO4, or ZnSO4). The complexes partition coefficients ( K complex) in each of these ATPS have been determined as a function of increasing tie-line length (TLL) and temperature. Unlike the partition behavior of most ions, [Fe(CN) 5 NO] 2(-) and [Mn(CN) 5 NO] 3(-) anions are concentrated in the polymer-rich phase with K values depending on the nature of the central atom as follows: K [Fe(C N) 5 NO] 2 - >> K [ Mn (CN 5 NO] 3 - > K [C r (C N) 5 NO ]3 - . The effect of ATPS salts in the complex partitioning behavior has also been verified following the order Li2 SO 4 > Na2 SO 4 > ZnSO4. Thermodynamic analysis revealed that the presence of anions in the polymer-rich phase is caused by an EO-[M(CN) 5 NO] ( x- ) (M = Fe, Mn, or Cr) enthalpic interaction. However, when this enthalpic interaction is weak, as in the case of the [Cr(CN) 5 NO]3(-) anion ( K [Cr(CN 5 NO] 3 - < 1), entropic driving forces dominate the transfer process, then causing the anions to concentrate in the salt-rich phase.

6.
J Phys Chem B ; 110(46): 23540-6, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107209

RESUMO

Ions are known to concentrate in the salt-enriched phase of aqueous two-phase systems, with the only known exception being the pertechnetate anion, TcO(4)(-). We have discovered a second ion, nitroprusside anion (NP), which is markedly transferred from the salt phase to the polymer phase. The partitioning behavior of [Fe(CN)(5)NO](2-) anion was investigated in ATPS formed by poly(ethylene oxide) of molar mass 3350 and 35000 g mol(-1), and different sulfate salts (Na(2)SO(4), Li(2)SO(4), and MgSO(4)). On the basis of a model, the nitroprusside high affinity for the macromolecular phase was attributed to an enthalpic specific interaction between the anion and ethylene oxide unit. Partition coefficients increased exponentially with tie-line length increase, reaching values as high as 1000 and showing a relationship very dependent on the salt nature, but independent of the polymer molar mass.


Assuntos
Ferrocianetos/química , Nitroprussiato/química , Polietilenoglicóis/química , Sulfatos/química , Água/química , Ânions , Soluções/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...