Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139368, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406941

RESUMO

An analytical method for quantification of seventeen pharmaceuticals and one metabolite was validated and applied in the analysis of hospital effluent samples. Two different sampling strategies were used: seasonal sampling, with 7 samples collected bimonthly; and hourly sampling, with 12 samples collected during 12 h. Thus, the variability was both seasonal and within the same day. High variability was observed in the measured concentrations of the pharmaceuticals and the metabolite. The quantification method, performed using weighted linear regression model, demonstrated results of average concentrations in seasonal samples ranged between 0.19 µgL-1 (carbamazepine) and higher than 61.56 µgL-1 (acetaminophen), while the hourly samples showed average concentrations between 0.07 µgL-1 (diazepam) and higher than 54.91 µgL-1 (acetaminophen). It is described as higher because the maximum concentration of the calibration curve took into account the dilution factor provided by DLLME. The diurnal results showed a trend towards higher concentrations in the first and last hours of sampling. The risk quotient (RQ) was calculated using organisms from three different trophic levels, for all the analytes quantified in the samples. Additionally, in order to understand the level of importance of each RQ, an expert panel was established, with contributions from 23 specialists in the area. The results were analyzed using a hybrid decision-making approach based on a Fuzzy Analytic Hierarchy Process (FAHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, in order to rank the compounds by environmental risk priority. The compounds of greatest concern were losartan, acetaminophen, 4-aminoantipyrine, sulfamethoxazole, and metoclopramide. Comparison of the environmental risk priority ranking with the potential human health risk was performed by applying the same multicriteria approach, with the prediction of endpoints using in silico (Q)SAR models. The results obtained suggested that sulfamethoxazole and acetaminophen were the most important analytes to be considered for monitoring.


Assuntos
Acetaminofen , Hospitais , Humanos , Sulfametoxazol , Preparações Farmacêuticas
2.
Sci Total Environ ; 834: 155119, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398122

RESUMO

The presence of pharmaceuticals and metabolites in effluents has become a serious environmental problem, so it is essential to be able to monitor these microcontaminants using qualitative approaches, as well as to assess the potential environmental risks that such compounds may present. Therefore, in this study, suspect screening analysis was performed of 2030 pharmaceuticals and metabolites in hospital effluent samples, applying different sample preparation techniques. Additionally, a pioneering association of (Q)SAR assessment of identified contaminants with the ELECTRE multi-criteria decision analysis technique made it possible to prioritize analytes according to their environmental risk, in order to enable their inclusion in environmental monitoring programs. The results showed that the most advantageous alternative sample preparation technique consisted of cleanup (100 mg of silica/alumina sorbent) + dispersive liquid-liquid microextraction (7.5 of aqueous matrix, 325 µL of chloroform (extracting solvent), and 500 µL of acetonitrile as dispersing solvent). This procedure resulted in the identification of 70 pharmaceuticals and metabolites in the composite sample tested. The suspect screening analysis found a total of 105 microcontaminants, 28 of them being "confirmed compounds" and 77 being "suspect compounds". Of the compounds identified, 87% were pharmaceuticals and 13% were metabolites. The compounds identified were subsequently evaluated using different open access software packages, considering eight endpoints: mobility, persistence, estrogen receptor binding, wastewater treatment plant total removal, biodegradability, PBT (persistent, bioaccumulation and toxic), mutagenicity, and carcinogenicity. The (Q)SAR prediction results were used as input data for the ELECTRE outranking method. Categorization of the identified compounds by ELECTRE resulted in the kernel (priority compounds) and a further 19 groups. ELECTRE sensitivity evaluation indicated that for all the cases, the kernel and the following two groups coincided. The categorization provided by the ELECTRE method constitutes a highly intuitive decision and choice tool, which can assist in the selection of compounds if subsequent quantitative analysis is to be carried out.


Assuntos
Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Hospitais , Preparações Farmacêuticas , Solventes/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA