Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 147: 102700, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184363

RESUMO

BACKGROUND: The search for new antimalarial treatments is urgent due to growing resistance to existing therapies. The Open Source Malaria (OSM) project offers a promising starting point, having extensively screened various compounds for their effectiveness. Further analysis of the chemical space surrounding these compounds could provide the means for innovative drugs. METHODS: We report an optimisation-based method for quantitative structure-activity relationship (QSAR) modelling that provides explainable modelling of ligand activity through a mathematical programming formulation. The methodology is based on piecewise regression principles and offers optimal detection of breakpoint features, efficient allocation of samples into distinct sub-groups based on breakpoint feature values, and insightful regression coefficients. Analysis of OSM antimalarial compounds yields interpretable results through rules generated by the model that reflect the contribution of individual fingerprint fragments in ligand activity prediction. Using knowledge of fragment prioritisation and screening of commercially available compound libraries, potential lead compounds for antimalarials are identified and evaluated experimentally via a Plasmodium falciparum asexual growth inhibition assay (PfGIA) and a human cell cytotoxicity assay. CONCLUSIONS: Three compounds are identified as potential leads for antimalarials using the methodology described above. This work illustrates how explainable predictive models based on mathematical optimisation can pave the way towards more efficient fragment-based lead discovery as applied in malaria.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Ligantes , Malária/tratamento farmacológico
2.
Healthc Anal (N Y) ; 2: 100115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37520620

RESUMO

Following the outbreak of the coronavirus epidemic in early 2020, municipalities, regional governments and policymakers worldwide had to plan their Non-Pharmaceutical Interventions (NPIs) amidst a scenario of great uncertainty. At this early stage of an epidemic, where no vaccine or medical treatment is in sight, algorithmic prediction can become a powerful tool to inform local policymaking. However, when we replicated one prominent epidemiological model to inform health authorities in a region in the south of Brazil, we found that this model relied too heavily on manually predetermined covariates and was too reactive to changes in data trends. Our four proposed models access data of both daily reported deaths and infections as well as take into account missing data (e.g., the under-reporting of cases) more explicitly, with two of the proposed versions also attempting to model the delay in test reporting. We simulated weekly forecasting of deaths from the period from 31/05/2020 until 31/01/2021, with first week data being used as a cold-start to the algorithm, after which we use a lighter variant of the model for faster forecasting. Because our models are significantly more proactive in identifying trend changes, this has improved forecasting, especially in long-range predictions and after the peak of an infection wave, as they were quicker to adapt to scenarios after these peaks in reported deaths. Assuming reported cases were under-reported greatly benefited the model in its stability, and modelling retroactively-added data (due to the "hot" nature of the data used) had a negligible impact on performance.

3.
J Med Chem ; 64(22): 16450-16463, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748707

RESUMO

The Open Source Malaria (OSM) consortium is developing compounds that kill the human malaria parasite, Plasmodium falciparum, by targeting PfATP4, an essential ion pump on the parasite surface. The structure of PfATP4 has not been determined. Here, we describe a public competition created to develop a predictive model for the identification of PfATP4 inhibitors, thereby reducing project costs associated with the synthesis of inactive compounds. Competition participants could see all entries as they were submitted. In the final round, featuring private sector entrants specializing in machine learning methods, the best-performing models were used to predict novel inhibitors, of which several were synthesized and evaluated against the parasite. Half possessed biological activity, with one featuring a motif that the human chemists familiar with this series would have dismissed as "ill-advised". Since all data and participant interactions remain in the public domain, this research project "lives" and may be improved by others.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Biológicos , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
4.
J Comput Aided Mol Des ; 33(9): 831-844, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31628660

RESUMO

Quantitative Structure-Activity Relationship (QSAR) models are critical in various areas of drug discovery, for example in lead optimisation and virtual screening. Recently, the need for models that are not only predictive but also interpretable has been highlighted. In this paper, a new methodology is proposed to build interpretable QSAR models by combining elements of network analysis and piecewise linear regression. The algorithm presented, modSAR, splits data using a two-step procedure. First, compounds associated with a common target are represented as a network in terms of their structural similarity, revealing modules of similar chemical properties. Second, each module is subdivided into subsets (regions), each of which is modelled by an independent linear equation. Comparative analysis of QSAR models across five data sets of protein inhibitors obtained from ChEMBL is reported and it is shown that modSAR offers similar predictive accuracy to popular algorithms, such as Random Forest and Support Vector Machine. Moreover, we show that models built by modSAR are interpretatable, capable of evaluating the applicability domain of the compounds and serve well tasks such as virtual screening and the development of new drug leads.


Assuntos
Biologia Computacional , Descoberta de Drogas/métodos , Proteínas/ultraestrutura , Relação Quantitativa Estrutura-Atividade , Algoritmos , Humanos , Modelos Lineares , Modelos Moleculares , Proteínas/antagonistas & inibidores , Proteínas/química , Máquina de Vetores de Suporte , Interface Usuário-Computador
5.
Mol Inform ; 38(3): e1800028, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30251339

RESUMO

Quantitative Structure-Activity Relationship (QSAR) models have been successfully applied to lead optimisation, virtual screening and other areas of drug discovery over the years. Recent studies, however, have focused on the development of models that are predictive but often not interpretable. In this article, we propose the application of a piecewise linear regression algorithm, OPLRAreg, to develop both predictive and interpretable QSAR models. The algorithm determines a feature to best separate the data into regions and identifies linear equations to predict the outcome variable in each region. A regularisation term is introduced to prevent overfitting problems and implicitly selects the most informative features. As OPLRAreg is based on mathematical programming, a flexible and transparent representation for optimisation problems, the algorithm also permits customised constraints to be easily added to the model. The proposed algorithm is presented as a more interpretable alternative to other commonly used machine learning algorithms and has shown comparable predictive accuracy to Random Forest, Support Vector Machine and Random Generalised Linear Model on tests with five QSAR data sets compiled from the ChEMBL database.


Assuntos
Inibidores Enzimáticos/química , Relação Quantitativa Estrutura-Atividade , Bases de Dados de Compostos Químicos , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...