Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202758

RESUMO

High-throughput sequencing (HTS) is becoming the new norm of diagnostics in plant quarantine settings. HTS can be used to detect, in theory, all pathogens present in any given sample. The technique's success depends on various factors, including methods for sample management/preparation and suitable bioinformatic analysis. The Limit of Detection (LoD) of HTS for plant diagnostic tests can be higher than that of PCR, increasing the risk of false negatives in the case of low titer of the target pathogen. Several solutions have been suggested, particularly for RNA viruses, including rRNA depletion of the host, dsRNA, and siRNA extractions, which increase the relative pathogen titer in a metagenomic sample. However, these solutions are costly and time-consuming. Here we present a faster and cost-effective alternative method with lower HTS-LoD similar to or lower than PCR. The technique is called TArget-SPecific Reverse Transcript (TASPERT) pool. It relies on pathogen-specific reverse primers, targeting all RNA viruses of interest, pooled and used in double-stranded cDNA synthesis. These reverse primers enrich the sample for only pathogens of interest. Evidence on how TASPERT is significantly superior to oligodT, random 6-mer, and 20-mer in generating metagenomic libraries containing the pathogen of interest is presented in this proof of concept.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Closteroviridae/genética , Closteroviridae/isolamento & purificação , Biologia Computacional , Genoma Viral , Metagenoma , Nepovirus/genética , Nepovirus/isolamento & purificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Transcrição Reversa
2.
Plants (Basel) ; 10(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525397

RESUMO

Agricultural high throughput diagnostics need to be fast, accurate and have multiplexing capacity. Metagenomic sequencing is being widely evaluated for plant and animal diagnostics. Bioinformatic analysis of metagenomic sequence data has been a bottleneck for diagnostic analysis due to the size of the data files. Most available tools for analyzing high-throughput sequencing (HTS) data require that the user have computer coding skills and access to high-performance computing. To overcome constraints to most sequencing-based diagnostic pipelines today, we have developed Microbe Finder (MiFi®). MiFi® is a web application for quick detection and identification of known pathogen species/strains in raw, unassembled HTS metagenomic data. HTS-based diagnostic tools developed through MiFi® must pass rigorous validation, which is outlined in this manuscript. MiFi® allows researchers to collaborate in the development and validation of HTS-based diagnostic assays using MiProbe™, a platform used for developing pathogen-specific e-probes. Validated e-probes are made available to diagnosticians through MiDetect™. Here we describe the e-probe development, curation and validation process of MiFi® using grapevine pathogens as a model system. MiFi® can be used with any pathosystem and HTS platform after e-probes have been validated.

3.
PLoS One ; 13(10): e0198575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30325975

RESUMO

E-probe Diagnostic for Nucleic acid Analysis (EDNA) is a bioinformatic tool originally developed to detect plant pathogens in metagenomic databases. However, enhancements made to EDNA increased its capacity to conduct hypothesis directed detection of specific gene targets present in transcriptomic databases. To target specific pathogenicity factors used by the pathogen to infect its host or other targets of interest, e-probes need to be developed for transcripts related to that function. In this study, EDNA transcriptomics (EDNAtran) was developed to detect the expression of genes related to aflatoxin production at the transcriptomic level. E-probes were designed from genes up-regulated during A. flavus aflatoxin production. EDNAtran detected gene transcripts related to aflatoxin production in a transcriptomic database from corn, where aflatoxin was produced. The results were significantly different from e-probes being used in the transcriptomic database where aflatoxin was not produced (atoxigenic AF36 strain and toxigenic AF70 in Potato Dextrose Broth).


Assuntos
Aflatoxinas/genética , Aspergilose/microbiologia , Aspergillus flavus/genética , Regulação Fúngica da Expressão Gênica , Transcriptoma , Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Vias Biossintéticas , Genes Fúngicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...