Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 281(2): 410-6, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15571696

RESUMO

The room temperature reaction of 4-(triethoxysilyl)butyronitrile, 4-TBN ((C2H5O)3Si(CH2)3CN), on weakly hydrated silica samples pretreated at 393 K has been studied by desorption experiments and by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy at different aging times under various water partial pressures. The reaction is demonstrated by the decrease of desorption of 4-TBN with time and the simultaneous disappearance of the 2980 and 1394 cm(-1) signals in the DRIFT spectra, assigned to the CH3 moiety of the ethoxy functions. Water partial pressure is shown to have a crucial effect on the rate and efficiency of the process as, after 6 days, for samples kept at room temperature under vacuum, ca. 50% of the silane has reacted, while for those kept in a water-saturated atmosphere the silane reaction reaches 96%. Although the silane appears to be irreversibly bonded to the surface, no definite conclusion may be drawn from these preliminary results as to the nature of the bonding (grafting or coating). These samples are compared to modified silicas prepared according to conventional methods. The same extent of silane reaction (50%) is achieved for preadsorbed samples kept under vacuum and either cured at 473 K for 30 h or kept at room temperature for 6 days. A mild and controlled modification of silica by triethoxysilanes can thus be achieved by first physisorbing known amounts of the modifying silanes from an organic solvent on pretreated silica and then letting the samples mature for a few days at room temperature in a water-saturated atmosphere.

2.
Photochem Photobiol Sci ; 1(5): 347-54, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12653474

RESUMO

Two different photosensitizers, 9,10-dicyanoanthracene (DCA) and benzophenone (BzO) or a silica bound derivative (BzO-Si) have been compared for the photooxidation of di-n-butyl sulfide and di-n-butyl disulfide. With either photosensitizer, sulfide photooxidation in acetonitrile leads very efficiently to sulfoxide, with sulfone and disulfides as by-products. Although an electron transfer mechanism has previously been established starting with DCA, our results are indicative of two competitive mechanisms using BzO as the photosensitizer, instead of singlet oxygen addition and electron transfer. The more sluggish photooxidation of disulfides leads to a complex mixture of products, among which n-butyl butanethiosulfonate and strong acids (alkylsulfonic and sulfuric) are the major ones. The relative ratio thiosulfonate: acids depends, among other factors, on the medium polarity with acid formation favored starting with BzO or BzO-Si in a methanol-water mixture. An electron transfer mechanism only can account for the observed products Superoxide anion, the formation of which is much easier starting from BzO than from DCA, is suggested to play a crucial role in this oxidative radical pathway. Starting from disulfides, grafted benzophenone is more efficient for acid formation than its soluble counterpart. As this photosensitizer can easily be recycled, an easy and smooth way to acid formation is thus available, provided that the reaction solvent is properly chosen.


Assuntos
Dissulfetos/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Sulfetos/química , Antracenos/química , Benzofenonas/química , Cianetos/química , Eletroquímica , Transporte de Elétrons , Radicais Livres/química , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Fotoquímica , Dióxido de Silício/química , Espectrometria de Fluorescência/métodos , Superóxidos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...