Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(5): 110317, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108533

RESUMO

Neural circuits function in the face of changing inputs, either caused by normal variation in stimuli or by cell death. To maintain their ability to perform essential computations with partial inputs, neural circuits make modifications. Here, we study the retinal circuit's responses to changes in light stimuli or in photoreceptor inputs by inducing partial cone death in the mature mouse retina. Can the retina withstand or recover from input loss? We find that the excitatory pathways exhibit functional loss commensurate with cone death and with some aspects predicted by partial light stimulation. However, inhibitory pathways recover functionally from lost input by increasing spatiotemporal integration in a way that is not recapitulated by partially stimulating the control retina. Anatomically, inhibitory synapses are upregulated on secondary bipolar cells and output ganglion cells. These findings demonstrate the greater capacity for inhibition, compared with excitation, to modify spatiotemporal processing with fewer cone inputs.


Assuntos
Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Camundongos , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
2.
Annu Rev Vis Sci ; 7: 105-128, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524879

RESUMO

Our sense of sight relies on photoreceptors, which transduce photons into the nervous system's electrochemical interpretation of the visual world. These precious photoreceptors can be disrupted by disease, injury, and aging. Once photoreceptors start to die, but before blindness occurs, the remaining retinal circuitry can withstand, mask, or exacerbate the photoreceptor deficit and potentially be receptive to newfound therapies for vision restoration. To maximize the retina's receptivity to therapy, one must understand the conditions that influence the state of the remaining retina. In this review, we provide an overview of the retina's structure and function in health and disease. We analyze a collection of observations on photoreceptor disruption and generate a predictive model to identify parameters that influence the retina's response. Finally, we speculate on whether the retina, with its remarkable capacity to function over light levels spanning nine orders of magnitude, uses these same adaptational mechanisms to withstand and perhaps mask photoreceptor loss.


Assuntos
Células Fotorreceptoras , Retina
3.
Cell Rep ; 31(10): 107730, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521255

RESUMO

Loss of primary neuronal inputs inevitably strikes every neural circuit. The deafferented circuit could propagate, amplify, or mitigate input loss, thus affecting the circuit's output. How the deafferented circuit contributes to the effect on the output is poorly understood because of lack of control over loss of and access to circuit elements. Here, we control the timing and degree of rod photoreceptor ablation in mature mouse retina and uncover compensation. Following loss of half of the rods, rod bipolar cells mitigate the loss by preserving voltage output. Such mitigation allows partial recovery of ganglion cell responses. We conclude that rod death is compensated for in the circuit because ganglion cell responses to stimulation of half of the rods in an unperturbed circuit are weaker than responses after death of half of the rods. The dominant mechanism of such compensation includes homeostatic regulation of inhibition to balance the loss of excitation.


Assuntos
Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Vias Visuais/fisiopatologia , Animais , Camundongos
4.
Cell Rep ; 27(7): 2171-2183.e5, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091454

RESUMO

Resilience of neural circuits has been observed in the persistence of function despite neuronal loss. In vision, acuity and sensitivity can be retained after 50% loss of cones. While neurons in the cortex can remodel after input loss, the contributions of cell-type-specific circuits to resilience are unknown. Here, we study the effects of partial cone loss in mature mouse retina where cell types and connections are known. At first-order synapses, bipolar cell dendrites remodel and synaptic proteins diminish at sites of input loss. Sites of remaining inputs preserve synaptic proteins. Second-order synapses between bipolar and ganglion cells remain stable. Functionally, ganglion cell spatio-temporal receptive fields retain center-surround structure following partial cone loss. We find evidence for slower temporal filters and expanded receptive field surrounds, derived mainly from inhibitory inputs. Surround expansion is absent in partially stimulated control retina. Results demonstrate functional resilience to input loss beyond pre-existing mechanisms in control retina.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Células Fotorreceptoras Retinianas Cones/patologia , Células Ganglionares da Retina/patologia , Sinapses/patologia
5.
Front Microbiol ; 5: 758, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610436

RESUMO

The Gram-positive model bacterium Bacillus subtilis contains two glutamate dehydro genase-encoding genes, rocG and gudB. While the rocG gene encodes the functional GDH, the gudB gene is cryptic (gudB(CR) ) in the laboratory strain 168 due to a perfect 18 bp-long direct repeat that renders the GudB enzyme inactive and unstable. Although constitutively expressed the GudB(CR) protein can hardly be detected in B. subtilis as it is rapidly degraded within stationary growth phase. Its high instability qualifies GudB(CR) as a model substrate for studying protein turnover in B. subtilis. Recently, we have developed a visual screen to monitor the GudB(CR) stability in the cell using a GFP-GudB(CR) fusion. Using fluorescent microscopy we found that the GFP protein is simultaneously degraded together with GudB(CR). This allows us to analyze the stability of GudB(CR) in living cells. By combining the visual screen with a transposon mutagenesis approach we looked for mutants that show an increased fluorescence signal compared to the wild type indicating a stabilized GFP-GudB(CR) fusion. We observed, that disruption of the arginine kinase encoding gene mcsB upon transposon insertion leads to increased amounts of the GFP-GudB(CR) fusion in this mutant. Deletion of the cognate arginine phosphatase YwlE in contrast results in reduced levels of the GFP-GudB(CR) fusion. Recently, it was shown that the kinase McsB is involved in phosphorylation of GudB(CR) on arginine residues. Here we show that selected arginine-lysine point mutations of GudB(CR) exhibit no influence on degradation. The activity of McsB and YwlE, however, are crucial for the activation and inhibition, respectively, of a proteolytic machinery that efficiently degrades the unstable GudB(CR) protein in B. subtilis.

6.
PLoS One ; 8(6): e66120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785476

RESUMO

Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudB(CR) gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudB(CR) allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudB(CR) allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudB(CR) allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.


Assuntos
Bacillus subtilis/fisiologia , Mutação , Seleção Genética , Alelos , Cromossomos Bacterianos , Ativação Enzimática , Expressão Gênica , Genes Reporter , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas , Taxa de Mutação , Nitrogênio/metabolismo , Ativação Transcricional
7.
Artigo em Inglês | MEDLINE | ID: mdl-22375108

RESUMO

In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory-motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...