Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(11): e202300469, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694531

RESUMO

Transition metal phosphides are promising, selective, and air-stable nanocatalysts for hydrogenation reactions. However, they often require fairly high temperatures and H2 pressures to provide quantitative conversions. This work reports the positive effect of phosphine additives on the activity of cobalt phosphide nano-urchins for the semi-hydrogenation of phenylacetylene. While the nanocatalyst's activity was low under mild conditions (7 bar of H2 , 100 °C), the addition of a catalytic amount of phosphine remarkably increased the conversion, e. g., from 13 % to 98 % in the case of Pn Bu3 . The heterogeneous nature of the catalyst was confirmed by negative supernatant activity tests. The catalyst integrity was carefully verified by post-mortem analyses (TEM, XPS, and liquid 31 P NMR). A stereo-electronic map was proposed to rationalize the activity enhancement provided over a selection of nine phosphines: the strongest effect was observed for low to moderately hindered phosphines, associated with strong electron donor abilities. A threshold in phosphine stoichiometry was revealed for the enhancement of activity to occur, which was related to the ratio of phosphine to surface cobalt atoms.

2.
Chempluschem ; 88(5): e202300038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36861404

RESUMO

Hydrosilylation reactions are commonly used for the reduction of carbonyl bonds in fine chemistry, catalyzed by transition metal complexes. The current challenge is to expand the scope of metal-free alternative catalysts, including in particular organocatalysts. This work describes the organocatalyzed hydrosilylation of benzaldehyde with a phosphine, introduced at 10 mol%, and phenylsilane at room temperature. The activation of phenylsilane was highly dependent on the physical properties of the solvent such as the polarity, and the highest conversions were obtained in acetonitrile and propylene carbonate with yields of 46 % and 97 %, respectively. The best results of the screening over 13 phosphines and phosphites were obtained with linear trialkylphoshines (PMe3 , Pn Bu3 , POct3 ), indicating the importance of their nucleophilicity, with yields of 88 %, 46 % and 56 %, respectively. With the help of heteronuclear 1 H-29 Si NMR spectroscopy, the products of the hydrosilylation (PhSiH3-n (OBn)n ) were identified, allowing a monitoring of the concentration in the different species, and thereby of their reactivity. The reaction displayed an induction period of ca. 60 min, followed by the sequential hydrosilylations presenting various reaction rates. In agreement with the formation of partial charges in the intermediate state, we propose a mechanism based on a hypervalent silicon center via the Lewis base activation of the silicon Lewis acid.

3.
Langmuir ; 39(2): 728-738, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584287

RESUMO

In modern laser technologies, there is a need for coatings that would be compatible with flexible substrates while retaining the advantages of inorganic compounds in terms of robustness. As a first step in this direction, we developed here thin films of lanthanide oxysulfide, of optical quality, prepared by low-temperature dip coating. As a model compound in the family of oxysulfides, (Gd,Ce)2O2S anisotropic nanoplates were used. The films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and in situ UV and IR spectroscopic ellipsometry, showing that the band gap of the materials was preserved through the deposition process. The thickness of the films was tuned in a broad range, from a few nanometers to 150 nm, using different concentrations of the colloidal suspensions as well as single-layer and multilayer deposition. Lastly, thermal treatment of the thin films was optimized to remove the stabilizing organic ligands of the nanoparticles while preserving their integrity, as confirmed by SEM and XRD.

4.
Nanoscale ; 14(20): 7547-7560, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412546

RESUMO

Bimetallic nickel-cobalt nanoparticles are highly sought for their potential as catalytic and magnetic nanoparticles. These are typically prepared in organic solvents in the presence of strong stabilizing ligands such as tri-n-octylphosphine (TOP). Due to the variety of cobalt crystallographic phases and to the strong interaction of the ligands with the metallic surfaces, forming fcc nanoparticles rather than a phase mixture is a challenging endeavor. Here, using a two-step synthesis strategy that aims at a core-shell nickel-cobalt morphology, we demonstrated that many parameters have to be adjusted: concentration of the metal precursors, stoichiometry of TOP, and heating program from room temperature to 180 °C. We found optimized conditions to form size-controlled fcc NiCo nanoparticles from preformed Ni nanoparticles, and the phase attribution was confirmed with a combination of X-Ray diffraction on powder and X-Ray absorption spectroscopy at the Co K edge. We then investigated the early stages of Co nucleation on the nickel using a lower stoichiometry of Co, down to 0.05 equiv. vs. Ni. Using X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled to energy-dispersive X-Ray spectroscopy and electron energy loss spectroscopy, we showed that cobalt reacts first on the nickel nanoparticles but easily forms cobalt-rich larger aggregates in the further steps of the reaction.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159767

RESUMO

Acceptability and relevance of nanoparticles in the society is greatly improved using a safer-by-design strategy. However, this is difficult to implement when too late in the development process or when nanoparticles are already on the market (e.g., TiO2). We employ this strategy for emerging nanoparticles of lanthanide oxysulfide of formula (Gd,Ce)2O2S, relevant for photocatalysis as well as for multimodal imaging, as the bandgap of the nanoparticles, related to their Ce content, impacts their ability to absorb visible light. As a first step, we investigated the production of reactive oxygen species (ROS) as a function of cerium content, in abiotic conditions and in vitro using murine macrophage RAW 264.7 cell line. We demonstrate that, at sub-lethal doses, Ce-containing oxysulfide nanoparticles are responsible for a higher ROS intracellular formation than cerium-free Gd2O2S nanoparticles, although no significant inflammatory response or oxidative stress was measured. Moreover, there was no significant loss of cerium as free cation from the nanoparticles, as evidenced by X-ray fluorescence mapping. Based on these results, we propose a risk analysis for lanthanide oxysulfide nanoparticles, leading to a technology assessment that fulfills the safer-by-design strategy.

6.
Front Chem ; 8: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296676

RESUMO

This review summarizes the syntheses and applications of metal oxysulfides. Bulk compounds of rare earth and transition metals are discussed in the section Introduction. After a presentation of their main properties and applications, their structures are presented and their syntheses are discussed. The section Bulk Materials and Their Main Applications is dedicated to the growing field of nanoscaled metal oxysulfides. Synthesis and applications of lanthanide-based nanoparticles are more mature and are discussed first. Then, works on transition-metal based nanoparticles are presented and discussed. Altogether, this review highlights the opportunities offered by metal oxysulfides for application in a range of technological fields, in relation with the most advanced synthetic routes and characterization techniques.

7.
ACS Nano ; 13(10): 11372-11381, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31584800

RESUMO

Unveiling the mechanism of electrocatalytic processes is fundamental for the search of more efficient and stable electrode materials for clean energy conversion devices. Although several in situ techniques are now available to track structural changes during electrocatalysis, especially of water oxidation, a direct observation, in real space, of morphological changes of nanostructured electrocatalysts is missing. Herein, we implement an in situ electrochemical Transmission Electron Microscopy (in situ EC-TEM) methodology for studying electrocatalysts of the oxygen evolution reaction (OER) during operation, by using model cobalt oxide Co3O4 nanoparticles. The observation conditions were optimized to mimic standard electrochemistry experiments in a regular electrochemical cell, allowing cyclic voltammetry and chronopotentiometry to be performed in similar conditions in situ and ex situ. This in situ EC-TEM method enables us to observe the chemical, morphological, and structural evolutions occurring in the initial nanoparticle-based electrode exposed to different aqueous electrolytes and under OER conditions. The results show that surface amorphization occurs, yielding a nanometric cobalt (oxyhydr)oxide-like phase during OER. This process is irreversible and occurs to an extent that has not been described before. Furthermore, we show that the pH and counterions of the electrolytes impact this restructuration, shedding light on the materials properties in neutral phosphate electrolytes. In addition to the structural changes followed in situ during the electrochemical measurements, this study demonstrates that it is possible to rely on in situ electrochemical TEM to reveal processes in electrocatalysts while preserving a good correlation with ex situ regular electrochemistry.

9.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31206813

RESUMO

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

10.
Chemistry ; 24(46): 12037-12043, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011117

RESUMO

Bimetallic nanoparticles are widely studied, for example in catalysis. However, possible restructuring in the environment of use, such as segregation or alloying, may occur. Taken individually, state-of-the-art analytical tools fail to give an overall picture of these transformations. This study combines an ensemble analysis (near-ambient-pressure X-ray photoelectron spectroscopy) with a local analysis (environmental transmission electron microscopy) to provide an in situ description of the restructuring of core-shell nickel-cobalt nanoparticles exposed to cycles of reduction and oxidation. It reveals a partial surface alloying accompanied by fragmentation of the shell into smaller clusters, which is not reversible. Beyond this case study, the methodology proposed here should be applicable in a broad range of studies dealing with the reactivity of mono- or bi-metallic metal nanoparticles.

11.
Chem Rec ; 18(7-8): 1114-1124, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29493872

RESUMO

Designing well-defined nanoparticles and nanoalloys is a tremendous way to achieve in-depth understanding of their intrinsic properties. In particular, structure and composition of the core and the surface of nanoalloys can be investigated by a combination of state-of-the-art in situ microscopy and spectroscopy. These nanoalloys represent a playground to establish structure-properties relationships within the nano-matter. They provide a much needed understanding of the distribution of each element within the nanoparticles, depending on the environment (gaseous atmosphere, temperature, etc.). This distribution may evolve over time. Lighter elements, such as phosphorus, are critical to the reactivity of the nanoparticle's surface in reactions such as CO or CO2 hydrogenation. Here, the rational design of nanoalloys will be discussed (reactants choice, composition control), in relation with their surface state. Consequences on heterogeneous and homogeneous catalytic reactions, as well as for energy storage and conversion, will be illustrated through examples.

12.
Inorg Chem ; 56(22): 14227-14236, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29090915

RESUMO

Lanthanide oxysulfide nanoparticles have recently attracted interest in view of their potential applications, such as lighting devices and MRI contrast agents, which requires a good stability in air and a controlled surface. In order to address these issues, in this work, air-sensitive Ce2O2S nanoparticles of hexagonal shape were successfully prepared and characterized under inert conditions. Bimetallic Gd2(1-y)Ce2yO2S nanoparticles of similar shape and size were also synthesized for the whole composition range (y from 0 to 1). X-ray diffraction structural data are found to follow Vegard's law up to y = 0.4, which is attributed to the loss of stability in air of Ce-rich nanocrystals beyond this threshold. This picture is supported by X-ray absorption spectra taken at the S K-edge and Ce L3-edge that show the partial oxidation of sulfide species and of CeIII to CeIV in the presence of air or water. A complementary near-ambient-pressure X-ray photoelectron spectroscopy study shows that at least two types of oxidized sulfur species form on the nanoparticle surface. Even in Gd2O2S nanoparticles that are generally considered to be air-stable, we found that sulfide ions are partially oxidized to sulfate in air. These results unveil the physicochemical mechanisms responsible for the surface reactivity of lanthanide oxysulfides nanoparticles in air.

13.
Inorg Chem ; 56(15): 9225-9234, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28737907

RESUMO

Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H2), and a mixture of H2 and carbon dioxide (CO2) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H2 activates CoB for the catalysis of CO2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

14.
Chem Commun (Camb) ; 52(61): 9546-9, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383864

RESUMO

An expeditious synthesis of metal carbide nanoparticles onto various carbon supports is demonstrated. The procedure is versatile and readily yields TiC, VC, Mo2C and W2C nanoparticles on different types of carbons. The reaction is initiated at room temperature and proceeds within seconds. This novel synthetic route paves the way for a large variety of metal carbide-carbon nanocomposites that may be implemented in emerging nanotechnology fields.

15.
Nanoscale ; 8(3): 1260-79, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26674446

RESUMO

Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

16.
Small ; 11(25): 3045-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727527

RESUMO

Bimetallic nanoparticle (NP) catalysts are interesting for the development of selective catalysts in reactions such as the reduction of CO2 by H2 to form hydrocarbons. Here the synthesis of Ni-Co NPs is studied, and the morphological and structural changes resulting from their activation (via oxidation/reduction cycles), and from their operation under reaction conditions, are presented. Using ambient-pressure X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and transmission electron microscopy, it is found that the initial core-shell structure evolves to form a surface alloy due to nickel migration from the core. Interestingly, the core consists of a Ni-rich single crystal and a void with sharp interfaces. Residual phosphorous species, coming from the ligands used for synthesis, are found initially concentrated in the NP core, which later diffuse to the surface.

17.
Chemistry ; 20(34): 10616-25, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25044189

RESUMO

Carbon monoxide is a ubiquitous molecule in surface science, materials chemistry, catalysis and nanotechnology. Its interaction with a number of metal surfaces is at the heart of major processes, such as Fischer-Tropsch synthesis or fuel-cell optimization. Recent works, coupling structural and nanoscale in situ analytic tools have highlighted the ability of metal surfaces and nanoparticles to undergo restructuring after exposure to CO under fairly mild conditions, generating nanostructures. This Minireview proposes a brief overview of recent examples of such nanostructuring, which leads to a discussion about the driving force in reversible and non-reversible situations.


Assuntos
Monóxido de Carbono/química , Metais/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Propriedades de Superfície
18.
Adv Mater ; 26(3): 371-90, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24318173

RESUMO

The notions of nanoscale "phase speciation" and "phase diagram" are defined and discussed in terms of kinetic and thermodynamic controls, based on the case of metal phosphide nanoparticles. After an overview of the most successful synthetic routes for these exotic nanomaterials, the cases of InP, Ni2 P, Ni12 P5 and Pdx Py are discussed in detail to highlight the relationship between composition, structure, and size at the nanoscale. The influence of morphology is discussed next by comparing the behavior of Cu3 P nanophases with those of Nix Py , FeP/Fe2 P, and CoP/Co2 P. Perspectives provide the reader with methodological guidelines for further investigation of nanoscale "phase diagrams", and their use for optimized synthesis of new functional nanomaterials.

20.
J Synchrotron Radiat ; 20(Pt 3): 504-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23592631

RESUMO

A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.


Assuntos
Monitoramento Ambiental/instrumentação , Gases/química , Calefação/instrumentação , Lasers , Nanopartículas Metálicas/química , Manejo de Espécimes/instrumentação , Espectroscopia por Absorção de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...