Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276356

RESUMO

A Round Robin exercise was implemented by ESA to compare different classification methods in detecting clouds from images taken by the PROBA-V sensor. A high-quality dataset of 1350 reflectances and Clear/Cloudy corresponding labels had been prepared by ESA in the framework of the exercise. Motivated by both the experience acquired by one of the authors in this exercise and the availability of such a reliable annotated dataset, we present a full assessment of the methodology proposed therein. Our objective is also to investigate specific issues related to cloud detection when remotely sensed images comprise only a few spectral bands in the visible and near-infrared. For this purpose, we consider a bunch of well-known classification methods. First, we demonstrate the feasibility of using a training dataset semi-automatically obtained from other accurate algorithms. In addition, we investigate the effect of ancillary information, e.g., surface type or climate, on accuracy. Then we compare the different classification methods using the same training dataset under different configurations. We also perform a consensus analysis aimed at estimating the degree of mutual agreement among classification methods in detecting Clear or Cloudy sky conditions.

2.
PLoS One ; 11(9): e0162553, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27680883

RESUMO

Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on advection-reaction-diffusion partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences.

3.
Math Biosci Eng ; 13(3): 483-93, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106179

RESUMO

A model is proposed to describe the spike-frequency adaptation observed in many neuronal systems. We assume that adaptation is mainly due to a calcium-activated potassium current, and we consider two coupled stochastic differential equations for which an analytical approach combined with simulation techniques and numerical methods allow to obtain both qualitative and quantitative results about asymptotic mean firing rate, mean calcium concentration and the firing probability density. A related algorithm, based on the Hazard Rate Method, is also devised and described.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Adaptação Fisiológica , Algoritmos , Simulação por Computador
4.
Comput Med Imaging Graph ; 38(5): 337-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24702776

RESUMO

This work investigates the capability of supervised classification methods in detecting both major tissues and subcortical structures using multispectral brain magnetic resonance images. First, by means of a realistic digital brain phantom, we investigated the classification performance of various Discriminant Analysis methods, K-Nearest Neighbor and Support Vector Machine. Then, using phantom and real data, we quantitatively assessed the benefits of integrating anatomical information in the classification, in the form of voxels coordinates as additional features to the intensities or tissue probabilistic atlases as priors. In addition we tested the effect of spatial correlations between neighboring voxels and image denoising. For each brain tissue we measured the classification performance in terms of global agreement percentage, false positive and false negative rates and kappa coefficient. The effectiveness of integrating spatial information or a tissue probabilistic atlas has been demonstrated for the aim of accurately classifying brain magnetic resonance images.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Análise Discriminante , Humanos , Máquina de Vetores de Suporte
5.
Math Biosci Eng ; 11(1): 1-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24245674

RESUMO

A method to generate first passage times for a class of stochastic processes is proposed. It does not require construction of the trajectories as usually needed in simulation studies, but is based on an integral equation whose unknown quantity is the probability density function of the studied first passage times and on the application of the hazard rate method. The proposed procedure is particularly efficient in the case of the Ornstein-Uhlenbeck process, which is important for modeling spiking neuronal activity.


Assuntos
Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Algoritmos , Simulação por Computador , Humanos , Matemática , Modelos Neurológicos , Probabilidade , Modelos de Riscos Proporcionais , Processos Estocásticos , Fatores de Tempo
6.
Math Biosci Eng ; 11(2): 189-201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24245714

RESUMO

With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times. However, we are able to apply some well-known results for the first passage time problem for the Ornstein-Uhlenbeck process in order to obtain (i) an approximation of the probability density function of the inter-spike intervals in one-way-type interaction and (ii) an approximation of the tail of the probability density function of the inter-spike intervals in the mutual interaction. Such an approximation is admissible for small instantaneous firing rates of both neurons.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Membranas Sinápticas/fisiologia , Humanos , Distribuição Normal , Processos Estocásticos
7.
IEEE Trans Neural Netw Learn Syst ; 23(12): 1930-47, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24808148

RESUMO

A Riemannian manifold optimization strategy is proposed to facilitate the relaxation of the orthonormality constraint in a more natural way in the course of performing independent component analysis (ICA) that employs a mutual information-based source-adaptive contrast function. Despite the extensive development of manifold techniques catering to the orthonormality constraint, only a limited number of works have been dedicated to oblique manifold (OB) algorithms to intrinsically handle the normality constraint, which has been empirically shown to be superior to other Riemannian and Euclidean approaches. Imposing the normality constraint implicitly, in line with the ICA definition, essentially guarantees a substantial improvement in the solution accuracy, by way of increased degrees of freedom while searching for an optimal unmixing ICA matrix, in contrast with the orthonormality constraint. Designs of the steepest descent, conjugate gradient with Hager-Zhang or a hybrid update parameter, quasi-Newton, and cost-effective quasi-Newton methods intended for OB are presented in this paper. Their performance is validated using natural images and systematically compared with the popular state-of-the-art approaches in order to assess the performance effects of the choice of algorithm and the use of a Riemannian rather than Euclidean framework. We surmount the computational challenge associated with the direct estimation of the source densities using the improved fast Gauss transform in the evaluation of the contrast function and its gradient. The proposed OB schemes may find applications in the offline image/signal analysis, wherein, on one hand, the computational overhead can be tolerated, and, on the other, the solution quality holds paramount interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...