Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 196: 110308, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677330

RESUMO

AIM: To validate a fully-automated lexicographic optimization-planning system (mCycle, Elekta) for single-(SL) and multiple-(ML, up to 4 metastases) lesions in intracranial stereotactic radiosurgery (SRS, 21 Gy, single fraction). METHODS: A pre-determined priority list, Wish-List (WL), represents a dialogue between planner and clinician, establishing strict constraints and pursuing objectives. In order to satisfy the clinical protocol without manual intervention, four patients were required to tweak and fine-tune each WL (SLp, MLp) for coplanar arcs. Thirty-five testing plans (20 SLp, 15 MLp) were automatically re-planned (mCP). Automatic and manual plans were compared including dose constraints, conformality, modulation complexity score (MCS), delivery time, and local gamma analysis (2%/2 mm). To ensure plan clinical acceptability, two radiation oncologists conducted an independent blind plan choice. RESULTS: Each WL-tuning took 3 days. Estimated median manual plans and mCP calculation time were 8 and 3 h, respectively. Significant increases in SLp and MLp target coverage and conformity were registered. mCP showed a not significant and clinically acceptable higher median brain V12Gy. SLp registered a -5.8% MU decrease with comparable median delivery time (MP 2.0 min, mCP 1.9 min) while MLp showed a +9.8% MU increase and longer delivery time (MP 3.5 min, mCP 4.4 min). mCP MCS resulted significantly higher without affecting gamma passing rates. At blind choice, mCP were preferred in the majority of cases. CONCLUSIONS: Lexicographic optimization produced acceptable SRS plans with coplanar arcs significantly reducing the overall planning time in cases with up to 4 brain metastases. These planning improvements suggest further investigations by setting high-quality non-coplanar arc plans as a reference.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiocirurgia/métodos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
2.
Polymers (Basel) ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959918

RESUMO

Chitosan films have attracted increased attention in the field of sensors because of chitosan's unique chemico-physical properties, including high adsorption capacity, filmability and transparency. A chitosan film sensor was developed through the dispersion of an ammonia specific reagent (Nessler's reagent) into a chitosan film matrix. The chitosan film sensor was characterized to assess the film's properties by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A gas diffusion device was prepared with the chitosan film sensor, enabling the collection and detection of ammonia vapor from biological samples. The chitosan film sensor color change was correlated with the ammonia concentration in samples of human serum and artificial urine. This method enabled facile ammonia detection and concentration measurement, making the sensor useful not only in clinical laboratories, but also for point-of-care devices and wherever there is limited access to modern laboratory facilities.

3.
Discov Oncol ; 14(1): 180, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775613

RESUMO

BACKGROUND: To investigate the capability of a not-yet commercially available fully automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), to further improve the plan quality of an already-validated Wish List (WL) pushing on the organs-at-risk (OAR) sparing without compromising target coverage and plan delivery accuracy. MATERIAL AND METHODS: Twenty-four mono-institutional consecutive cervical cancer Volumetric-Modulated Arc Therapy (VMAT) plans delivered between November 2019 and April 2022 (50 Gy/25 fractions) have been retrospectively selected. In mCycle the LO planning algorithm was combined with the a-priori multi-criterial optimization (MCO). Two versions of WL have been defined to reproduce manual plans (WL01), and to improve the OAR sparing without affecting minimum target coverage and plan delivery accuracy (WL02). Robust WLs have been tuned using a subset of 4 randomly selected patients. The remaining plans have been automatically re-planned by using the designed WLs. Manual plans (MP) and mCycle plans (mCP01 and mCP02) were compared in terms of dose distributions, complexity, delivery accuracy, and clinical acceptability. Two senior physicians independently performed a blind clinical evaluation, ranking the three competing plans. Furthermore, a previous defined global quality index has been used to gather into a single score the plan quality evaluation. RESULTS: The WL tweaking requests 5 and 3 working days for the WL01 and the WL02, respectively. The re-planning took in both cases 3 working days. mCP01 best performed in terms of target coverage (PTV V95% (%): MP 98.0 [95.6-99.3], mCP01 99.2 [89.7-99.9], mCP02 96.9 [89.4-99.5]), while mCP02 showed a large OAR sparing improvement, especially in the rectum parameters (e.g., Rectum D50% (Gy): MP 41.7 [30.2-47.0], mCP01 40.3 [31.4-45.8], mCP02 32.6 [26.9-42.6]). An increase in plan complexity has been registered in mCPs without affecting plan delivery accuracy. In the blind comparisons, all automated plans were considered clinically acceptable, and mCPs were preferred over MP in 90% of cases. Globally, automated plans registered a plan quality score at least comparable to MP. CONCLUSIONS: This study showed the flexibility of the Lexicographic approach in creating more demanding Wish Lists able to potentially minimize toxicities in RT plans.

4.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831496

RESUMO

The dosimetric impact of intrafraction prostate motion and interfraction anatomical changes and the effect of beam gating and motion correction were investigated in dose-escalated linac-based SBRT. Fifty-six gated fractions were delivered using a novel electromagnetic tracking device with a 2 mm threshold. Real-time prostate motion data were incorporated into the patient's original plan with an isocenter shift method. Delivered dose distributions were obtained by recalculating these motion-encoded plans on deformed CTs reflecting the patient's CBCT daily anatomy. Non-gated treatments were simulated using the prostate motion data assuming that no treatment interruptions have occurred. The mean relative dose differences between delivered and planned treatments were -3.0% [-18.5-2.8] for CTV D99% and -2.6% [-17.8-1.0] for PTV D95%. The median cumulative CTV coverage with 93% of the prescribed dose was satisfactory. Urethra sparing was slightly degraded, with the maximum dose increased by only 1.0% on average, and a mean reduction in the rectum and bladder doses was seen in almost all dose metrics. Intrafraction prostate motion marginally contributed in gated treatments, while in non-gated treatments, further deteriorations in the minimum target coverage and bladder dose metrics would have occurred on average. The implemented motion management strategy and the strict patient preparation regimen, along with other treatment optimization strategies, ensured no significant degradations of dose metrics in delivered treatments.

5.
Front Oncol ; 12: 1041839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465394

RESUMO

Aim: In this study, a not yet commercially available fully-automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), was validated for cervical cancer. Material and methods: Twenty-four mono-institutional consecutive treatment plans (50 Gy/25 fx) delivered between November 2019 and April 2022 were retrospectively selected. The automatic re-planning was performed by mCycle, implemented in the Monaco TPS research version (v5.59.13), in which the LO and Multicriterial Optimization (MCO) are coupled with Monte Carlo calculation. mCycle optimization follows an a priori assigned priority list, the so-called Wish List (WL), representing a dialogue between the radiation oncologist and the planner, setting hard constraints and following objectives. The WL was tuned on a patient subset according to the institution's clinical protocol to obtain an optimal plan in a single optimization. This robust WL was then used to automatically re-plan the remaining patients. Manual plans (MP) and mCycle plans (mCP) were compared in terms of dose distributions, complexity (modulation complexity score, MCS), and delivery accuracy (perpendicular diode matrices, gamma analysis-passing ratio, PR). Their clinical acceptability was assessed through the blind choice of two radiation oncologists. Finally, a global quality score index (SI) was defined to gather into a single number the plan evaluation process. Results: The WL tuning requested four patients. The 20 automated re-planning tasks took three working days. The median optimization and calculation time can be estimated at 4 h and just over 1 h per MP and mCP, respectively. The dose comparison showed a comparable organ-at-risk spare. The planning target volume coverage increased (V95%: MP 98.0% [95.6-99.3]; mCP 99.2%[89.7-99.9], p >0.05). A significant increase has been registered in MCS (MP 0.29 [0.24-0.34]; mCP 0.26 [0.23-0.30], p <0.05) without affecting delivery accuracy (PR (3%/3mm): MP 97.0% [92.7-99.2]; mCP 97.1% [95.0-98.6], p >0.05). In the blind choice, all mCP results were clinically acceptable and chosen over MP in more than 75% of cases. The median SI score was 0.69 [0.41-0.84] and 0.73 [0.51-0.82] for MP and mCP, respectively (p >0.05). Conclusions: mCycle plans were comparable to clinical manual plans, more complex but accurately deliverable and registering a similar SI. Automated plans outperformed manual plans in blinded clinical choice.

6.
Front Oncol ; 12: 883725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463373

RESUMO

Background: Extreme hypofractionation requires tight planning margins, high dose gradients, and strict adherence to planning criteria in terms of patient positioning and organ motion mitigation. This study reports the first clinical experience worldwide using a novel electromagnetic (EM) tracking device for intrafraction prostate motion management during dose-escalated linac-based stereotactic body radiation therapy (SBRT). Methods: Thirteen patients with organ-confined prostate cancer underwent dose-escalated SBRT using flattening filter-free (FFF) volumetric modulated arc therapy (VMAT). The EM tracking device consisted of an integrated Foley catheter with a transmitter. Patients were simulated and treated with a filled bladder and an empty rectum. Setup accuracy was achieved by ConeBeam-CT (CBCT) matching, and motion was tracked during all the procedure. Treatment was interrupted when the signals exceeded a 2 mm threshold in any of the three spatial directions and, unless the offset was transient, target position was re-defined by repeating CBCT. Moreover, the displacements that would have occurred without any intrafraction organ motion management (i.e. no interruptions and repositionings) were simulated. Results: In 31 out of 56 monitored fractions (55%), no intervention was required to correct the target position. In 25 (45%) a correction was mandated, but only in 10 (18%), the beam delivery was interrupted. Total treatment time lasted on average 10.2 minutes, 6.7 minutes for setup, and 3.5 minutes for beam delivery. Without any intrafraction motion management, the overall mean treatment time and the mean delivery time would have been 6.9 minutes and 3.2 minutes, respectively. The prostate would have been found outside the tolerance in 8% of the total session time, in 4% of the time during the setup, and in 14% during the beam-on phase. Predominant motion pattern was posterior and its probability increased with time, with a mean motion ≤ 2 mm occurring within 10 minutes. Conclusions: EM real-time tracking was successfully implemented for intrafraction motion management during dose-escalated prostate SBRT. Results showed that most of the observed displacements were < 2 mm in any direction; however, there were a non-insignificant number of fractions with motion exceeding the predefined threshold, which would have otherwise gone undetected without intrafraction motion management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...