Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 9(3): 438-454, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055299

RESUMO

We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.


Assuntos
Anticorpos Biespecíficos/biossíntese , Imunoglobulina G/imunologia , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/biossíntese , Animais , Anticorpos Biespecíficos/isolamento & purificação , Receptores ErbB/imunologia , Humanos , Proteólise , Receptor IGF Tipo 1/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
2.
MAbs ; 7(1): 152-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25484051

RESUMO

Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.


Assuntos
Anticorpos Monoclonais/química , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Simulação de Acoplamento Molecular , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Células CHO , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Cricetinae , Cricetulus , Cristalografia por Raios X , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Neutrófilos/imunologia , Estrutura Quaternária de Proteína , Receptores de Formil Peptídeo/imunologia
3.
Pharmaceuticals (Basel) ; 6(5): 681-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24276173

RESUMO

Screening for biologics, in particular antibody drugs, has evolved significantly over the last 20 years. Initially, the screening processes and technologies from many years experience with small molecules were adopted and modified to suit the needs of biologics discovery. Since then, antibody drug discovery has matured significantly and is today investing earlier in new technologies that commercial suppliers are now developing specifically to meet the growing needs of large molecule screening. Here, we review the evolution of screening and automation technologies employed in antibody discovery and highlight the benefits that these changes have brought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...