Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472257

RESUMO

Knowledge of the mechanisms underpinning the development of protective immunity conferred by mRNA vaccines is fragmentary. Here we investigated responses to COVID-19 mRNA vaccination via ultra-low-volume sampling and high-temporal-resolution transcriptome profiling (23 subjects across 22 timepoints, and with 117 COVID-19 patients used as comparators). There were marked differences in the timing and amplitude of the responses to the priming and booster doses. Notably, we identified two distinct interferon signatures. The first signature (A28/S1) was robustly induced both post-prime and post-boost and in both cases correlated with the subsequent development of antibody responses. In contrast, the second interferon signature (A28/S2) was robustly induced only post-boost, where it coincided with a transient inflammation peak. In COVID19 patients, a distinct phenotype dominated by A28/S2 was associated with longer duration of intensive care. In summary, high-temporal-resolution transcriptomic permitted the identification of post- vaccination phenotypes that are determinants of the course of COVID-19 disease.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-419044

RESUMO

Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guerin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilized, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralizing antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralized B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...