Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-096511

RESUMO

Broadly protective vaccines against known and pre-emergent coronaviruses are urgently needed. Critical to their development is a deeper understanding of cross-neutralizing antibody responses induced by natural human coronavirus (HCoV) infections. Here, we mined the memory B cell repertoire of a convalescent SARS donor and identified 200 SARS-CoV-2 binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of pre-existing memory B cells (MBCs) elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a new target for the rational design of pan-sarbecovirus vaccines.

2.
Minim Invasive Ther Allied Technol ; 29(4): 194-201, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31082283

RESUMO

Background: Significant advances in minimally invasive implantation of mechanical circulatory support devices have been made. These approaches are technically challenging and associated with a learning curve. Simulation and training opportunities in these techniques are limited. We developed a high-fidelity novel model for minimally invasive left ventricular assist device implantation.Material and methods: Using a modified inanimate simulator (LSI SOLUTIONS®) and an animal tissue model, a hybrid simulator was created, with a porcine ex vivo heart secured within the inanimate simulator in the normal anatomic position. Key components of the minimally invasive left ventricular assist device implantation were performed, including left ventricular apical coring, attachment of the apical ring, attachment of the assist device, and creation of the aortic-outflow graft anastomosis.Results: A novel composite inanimate and tissue model for minimally invasive left ventricular assist device implantation was successfully developed. These simulation techniques were reproducible, and the model demonstrated ability to successfully simulate key components of the procedure.Conclusions: This high-fidelity, reproducible hybrid model allows for crucial components of minimally invasive LVAD implantation to be performed. This model has the potential to be used as an adjunct to surgical training, providing a safe and controlled learning environment for trainees to acquire skills in minimally invasive LVAD implantation.


Assuntos
Ventrículos do Coração/cirurgia , Coração Auxiliar , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Implantação de Prótese/métodos , Anastomose Cirúrgica/métodos , Animais , Humanos , Masculino , Modelos Anatômicos , Estudos Retrospectivos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...