Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645088

RESUMO

Imaging reporter genes are indispensable for visualising biological processes in living subjects, particularly in cancer research where they have been used to observe tumour development, cancer cell dissemination, and treatment response. Engineering reporter genes into the germline frequently involves single imaging modality reporters operating over limited spatial scales. To address these limitations, we developed an inducible triple-reporter mouse model (Rosa26LSL - NRL) that integrates reporters for complementary imaging modalities, flfluorescence, bioluminescence and positron emission tomography (PET), along with inducible Cre-lox functionality for precise spatiotemporal control of reporter expression. We demonstrated robust reporter inducibility across various tissues in the Rosa26LSL - NRL mouse, facilitating effective tracking and characterisation of tumours in liver and lung cancer mouse models. We precisely pinpointed tumour location using multimodal whole-body imaging which guided in situ lung microscopy to visualise cell-cell interactions within the tumour microenvironment. The triple-reporter system establishes a robust new platform technology for multi-scale investigation of biological processes within whole animals, enabling tissue-specific and sensitive cell tracking, spanning from the whole-body to cellular scales.

2.
Sci Signal ; 17(827): eade0580, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470957

RESUMO

Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Células Endoteliais , Neoplasias/metabolismo , Membrana Celular , Linhagem Celular , Fibroblastos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358352

RESUMO

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Assuntos
Neoplasias Colorretais , Neutrófilos , Animais , Camundongos , Humanos , Recidiva Local de Neoplasia/metabolismo , Transdução de Sinais/genética , Neoplasias Colorretais/genética , Análise de Célula Única
4.
Neuro Oncol ; 26(4): 625-639, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37936324

RESUMO

BACKGROUND: Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS: Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS: High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS: We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Integrinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Invasividade Neoplásica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
5.
Nat Commun ; 14(1): 6039, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758700

RESUMO

Aberrant expansion of KRT5+ basal cells in the distal lung accompanies progressive alveolar epithelial cell loss and tissue remodelling during fibrogenesis in idiopathic pulmonary fibrosis (IPF). The mechanisms determining activity of KRT5+ cells in IPF have not been delineated. Here, we reveal a potential mechanism by which KRT5+ cells migrate within the fibrotic lung, navigating regional differences in collagen topography. In vitro, KRT5+ cell migratory characteristics and expression of remodelling genes are modulated by extracellular matrix (ECM) composition and organisation. Mass spectrometry- based proteomics revealed compositional differences in ECM components secreted by primary human lung fibroblasts (HLF) from IPF patients compared to controls. Over-expression of ECM glycoprotein, Secreted Protein Acidic and Cysteine Rich (SPARC) in the IPF HLF matrix restricts KRT5+ cell migration in vitro. Together, our findings demonstrate how changes to the ECM in IPF directly influence KRT5+ cell behaviour and function contributing to remodelling events in the fibrotic niche.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Matriz Extracelular , Células Epiteliais Alveolares , Transporte Biológico , Movimento Celular , Queratina-5
6.
Front Toxicol ; 5: 1200650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441092

RESUMO

Hypothesis: Asbestos-driven inflammation contributes to malignant pleural mesothelioma beyond the acquisition of rate-limiting mutations. Methods: Genetically modified conditional allelic mice that were previously shown to develop mesothelioma in the absence of exposure to asbestos were induced with lentiviral vector expressing Cre recombinase with and without intrapleural injection of amosite asbestos and monitored until symptoms required euthanasia. Resulting tumours were examined histologically and by immunohistochemistry for expression of lineage markers and immune cell infiltration. Results: Injection of asbestos dramatically accelerated disease onset and end-stage tumour burden. Tumours developed in the presence of asbestos showed increased macrophage infiltration. Pharmacological suppression of macrophages in mice with established tumours failed to extend survival or to enhance response to chemotherapy. Conclusion: Asbestos-driven inflammation contributes to the severity of mesothelioma beyond the acquisition of rate-limiting mutations, however, targeted suppression of macrophages in established epithelioid mesothelioma showed no therapeutic benefit.

7.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727461

RESUMO

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Purinas , RNA Mensageiro/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo
8.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223308

RESUMO

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

9.
Gut ; 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477863

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

10.
Sci Signal ; 15(720): eabd9099, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133863

RESUMO

Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.


Assuntos
Regeneração Hepática , Proteína Supressora de Tumor p53 , Animais , Dano ao DNA , Genes Reporter , Regeneração Hepática/genética , Camundongos , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Sci Immunol ; 6(65): eabj2132, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797692

RESUMO

Alveolar macrophages are the most abundant macrophages in the healthy lung where they play key roles in homeostasis and immune surveillance against airborne pathogens. Tissue-specific differentiation and survival of alveolar macrophages rely on niche-derived factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor­ß (TGF-ß). However, the nature of the downstream molecular pathways that regulate the identity and function of alveolar macrophages and their response to injury remain poorly understood. Here, we identify that the transcription factor EGR2 is an evolutionarily conserved feature of lung alveolar macrophages and show that cell-intrinsic EGR2 is indispensable for the tissue-specific identity of alveolar macrophages. Mechanistically, we show that EGR2 is driven by TGF-ß and GM-CSF in a PPAR-γ­dependent manner to control alveolar macrophage differentiation. Functionally, EGR2 was dispensable for the regulation of lipids in the airways but crucial for the effective handling of the respiratory pathogen Streptococcus pneumoniae. Last, we show that EGR2 is required for repopulation of the alveolar niche after sterile, bleomycin-induced lung injury and demonstrate that EGR2-dependent, monocyte-derived alveolar macrophages are vital for effective tissue repair after injury. Collectively, we demonstrate that EGR2 is an indispensable component of the transcriptional network controlling the identity and function of alveolar macrophages in health and disease.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/imunologia , Macrófagos Alveolares/imunologia , Animais , Feminino , Humanos , Macrófagos Alveolares/patologia , Masculino , Camundongos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/imunologia
12.
Eur Urol Open Sci ; 29: 19-29, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34337530

RESUMO

BACKGROUND: Pelvic nodal metastasis in prostate cancer impacts patient outcome negatively. OBJECTIVE: To explore tumor-infiltrating immune cells as a potential predictive tool for regional lymph node (LN) metastasis. DESIGN SETTING AND PARTICIPANTS: We applied multiplex immunofluorescence and targeted transcriptomic analysis on 94 radical prostatectomy specimens in patients with (LN+) or without (LN-) pelvic nodal metastases. Both intraepithelial and stromal infiltrations of immune cells and differentially expressed genes (mRNA and protein levels) were correlated with the nodal status. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The identified CD4 effector cell signature of nodal metastasis was validated in a comparable independent patient cohort of 184 informative cases. Patient outcome analysis and decision curve analysis were performed with the CD4 effector cell density-based signature. RESULTS AND LIMITATIONS: In the discovery cohort, both tumor epithelium and stroma from patients with nodal metastasis had significantly lower infiltration of multiple immune cell types, with stromal CD4 effector cells highlighted as the top candidate marker. Targeted gene expression analysis and confirmatory protein analysis revealed key alteration of extracellular matrix components in tumors with nodal metastasis. Of note, stromal CD4 immune cell density was a significant independent predictor of LN metastasis (odds ratio [OR] = 0.15, p = 0.004), and was further validated as a significant predictor of nodal metastasis in the validation cohort (OR = 0.26, p < 0.001). CONCLUSIONS: Decreased T-cell infiltrates in the primary tumor (particularly CD4 effector cells) are associated with a higher risk of LN metastasis. Future evaluation of CD4-based assays on prostate cancer diagnostic biopsy materials may improve selection of at-risk patients for the treatment of LN metastasis. PATIENT SUMMARY: In this report, we found that cancer showing evidence of cancer metastasis to the lymph nodes tends to have less immune cells present within the tumor. We conclude that the extent of immune cells present within a prostate tumor can help doctors determine the most appropriate treatment plan for individual patients.

14.
Front Immunol ; 12: 597595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953706

RESUMO

The rapid response of neutrophils throughout the body to a systemic challenge is a critical first step in resolution of bacterial infection such as Escherichia coli (E. coli). Here we delineated the dynamics of this response, revealing novel insights into the molecular mechanisms using lung and spleen intravital microscopy and 3D ex vivo culture of living precision cut splenic slices in combination with fluorescent labelling of endogenous leukocytes. Within seconds after challenge, intravascular marginated neutrophils and lung endothelial cells (ECs) work cooperatively to capture pathogens. Neutrophils retained on lung ECs slow their velocity and aggregate in clusters that enlarge as circulating neutrophils carrying E. coli stop within the microvasculature. The absolute number of splenic neutrophils does not change following challenge; however, neutrophils increase their velocity, migrate to the marginal zone (MZ) and form clusters. Irrespective of their location all neutrophils capturing heat-inactivated E. coli take on an activated phenotype showing increasing surface CD11b. At a molecular level we show that neutralization of ICAM-1 results in splenic neutrophil redistribution to the MZ under homeostasis. Following challenge, splenic levels of CXCL12 and ICAM-1 are reduced allowing neutrophils to migrate to the MZ in a CD29-integrin dependent manner, where the enlargement of splenic neutrophil clusters is CXCR2-CXCL2 dependent. We show directly molecular mechanisms that allow tissue resident neutrophils to provide the first lines of antimicrobial defense by capturing circulating E. coli and forming clusters both in the microvessels of the lung and in the parenchyma of the spleen.


Assuntos
Movimento Celular/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Baço/imunologia , Animais , Quimiocina CXCL12/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Infecções por Escherichia coli/patologia , Feminino , Molécula 1 de Adesão Intercelular/imunologia , Pulmão/patologia , Camundongos , Neutrófilos/patologia , Baço/patologia
15.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720040

RESUMO

The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.


Assuntos
Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Animais , Progressão da Doença , Humanos , Imunoterapia , Modelos Imunológicos , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Neoplasias/imunologia , Neoplasias/terapia , Neutropenia/imunologia , Neutrófilos/patologia , Neutrófilos/fisiologia , Pesquisa Translacional Biomédica , Microambiente Tumoral/fisiologia
16.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472858

RESUMO

BACKGROUND: Metastatic breast cancer is a leading cause of cancer-related death in women worldwide. Infusion of natural killer (NK) cells is an emerging immunotherapy for such malignant tumors, although elimination of the immunosuppressive tumor environment is required to improve its efficacy. The effects of this "metastatic" tumor environment on NK cells, however, remain largely unknown. Previous studies, including our own, have demonstrated that metastasis-associated macrophages (MAMs) are one of the most abundant immune cell types in the metastatic tumor niche in mouse models of metastatic breast cancer. We thus investigated the effects of MAMs on antitumor functions of NK cells in the metastatic tumor microenvironment. METHODS: MAMs were isolated from the tumor-bearing lung of C57BL/6 mice intravenously injected with E0771-LG mouse mammary tumor cells. The effects of MAMs on NK cell cytotoxicity towards E0771-LG cells were evaluated in vitro by real-time fluorescence microscopy. The effects of MAM depletion on NK cell activation, maturation, and accumulation in the metastatic lung were evaluated by flow cytometry (CD69, CD11b, CD27) and in situ hybridization (Ncr1) using colony-stimulating factor 1 (CSF-1) receptor conditional knockout (Csf1r-cKO) mice. Finally, metastatic tumor loads in the chest region of mice were determined by bioluminescence imaging in order to evaluate the effect of MAM depletion on therapeutic efficacy of endogenous and adoptively transferred NK cells in suppressing metastatic tumor growth. RESULTS: MAMs isolated from the metastatic lung suppressed NK cell-induced tumor cell apoptosis in vitro via membrane-bound transforming growth factor ß (TGF-ß) dependent mechanisms. In the tumor-challenged mice, depletion of MAMs increased the percentage of activated (CD69+) and mature (CD11b+CD27-) NK cells and the number of Ncr1+ NK cells as well as NK cell-mediated tumor rejection in the metastatic site. Moreover, MAM depletion or TGF-ß receptor antagonist treatment significantly enhanced the therapeutic efficacy of NK cell infusion in suppressing early metastatic tumor outgrowth. CONCLUSION: This study demonstrates that MAMs are a main negative regulator of NK cell function within the metastatic tumor niche, and MAM targeting is an attractive strategy to improve NK cell-based immunotherapy for metastatic breast cancer.


Assuntos
Neoplasias da Mama/terapia , Células Matadoras Naturais/transplante , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Fator de Crescimento Transformador beta/metabolismo , Macrófagos Associados a Tumor/imunologia , Transferência Adotiva , Animais , Antígenos Ly/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Técnicas de Inativação de Genes , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Transplante de Neoplasias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
17.
Parasit Vectors ; 13(1): 551, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160409

RESUMO

BACKGROUND: Pulmonary manifestations are regularly reported in both human and animal filariasis. In human filariasis, the main known lung manifestations are the tropical pulmonary eosinophilia syndrome. Its duration and severity are correlated with the presence of microfilariae. Litomosoides sigmodontis is a filarial parasite residing in the pleural cavity of rodents. This model is widely used to understand the immune mechanisms that are established during infection and for the screening of therapeutic molecules. Some pulmonary manifestations during the patent phase of infection with L. sigmodontis have been described in different rodent hosts more or less permissive to infection. METHODS: Here, the permissive Mongolian gerbil (Meriones unguiculatus) was infected with L. sigmodontis. Prevalence and density of microfilariae and adult parasites were evaluated. Lungs were analyzed for pathological signatures using immunohistochemistry and 3D imaging techniques (two-photon and light sheet microscopy). RESULTS: Microfilaremia in gerbils was correlated with parasite load, as amicrofilaremic individuals had fewer parasites in their pleural cavities. Fibrotic polypoid structures were observed on both pleurae of infected gerbils. Polyps were of variable size and developed from the visceral mesothelium over the entire pleura. The larger polyps were vascularized and strongly infiltrated by immune cells such as eosinophils, macrophages or lymphocytes. The formation of these structures was induced by the presence of adult filariae since small and rare polyps were observed before patency, but they were exacerbated by the presence of gravid females and microfilariae. CONCLUSIONS: Altogether, these data emphasize the role of host-specific factors in the pathogenesis of filarial infections.


Assuntos
Eosinófilos/imunologia , Filariose/patologia , Gerbillinae/parasitologia , Microfilárias/patogenicidade , Cavidade Pleural/parasitologia , Pólipos/imunologia , Animais , Feminino , Fibrose , Filariose/imunologia , Filariose/parasitologia , Filarioidea/patogenicidade , Pulmão/parasitologia , Pulmão/patologia , Masculino , Microfilárias/imunologia , Carga Parasitária , Cavidade Pleural/imunologia , Cavidade Pleural/patologia , Pólipos/parasitologia , Pólipos/patologia
18.
J Leukoc Biol ; 107(6): 1175-1185, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374077

RESUMO

Treatment with the CXCR4 antagonist, plerixafor (AMD3100), has been proposed for clinical use in patients with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome and in pulmonary fibrosis. However, there is controversy with respect to the impact of plerixafor on neutrophil dynamics in the lung, which may affect its safety profile. In this study, we investigated the kinetics of endogenous neutrophils by direct imaging, using confocal intravital microscopy in mouse bone marrow, spleen, and lungs. Neutrophils are observed increasing their velocity and exiting the bone marrow following plerixafor administration, with a concomitant increase in neutrophil numbers in the blood and spleen, while the marginated pool of neutrophils in the lung microvasculature remained unchanged in terms of numbers and cell velocity. Use of autologous radiolabeled neutrophils and SPECT/CT imaging in healthy volunteers showed that plerixafor did not affect GM-CSF-primed neutrophil entrapment or release in the lungs. Taken together, these data suggest that plerixafor causes neutrophil mobilization from the bone marrow but does not impact on lung marginated neutrophil dynamics and thus is unlikely to compromise respiratory host defense both in humans and mice.


Assuntos
Medula Óssea/efeitos dos fármacos , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Benzilaminas , Medula Óssea/diagnóstico por imagem , Medula Óssea/imunologia , Rastreamento de Células/métodos , Ciclamos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Contagem de Leucócitos , Pulmão/citologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/imunologia , Compostos Radiofarmacêuticos/administração & dosagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Baço/citologia , Baço/diagnóstico por imagem , Baço/imunologia , Tecnécio/administração & dosagem
19.
Mol Ther Oncolytics ; 16: 289-301, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32195317

RESUMO

Oncolytic viruses (OVs) can trigger profound innate and adaptive immune responses, which have the potential both to potentiate and reduce the activity of OVs. Natural killer (NK) cells can mediate potent anti-viral and anti-tumoral responses, but there are no data on the role of NK cells in oncolytic adenovirus activity. Here, we have used two different oncolytic adenoviruses-the Ad5 E1A CR2-deletion mutant dl922-947 (group C) and the chimeric Ad3/Ad11p mutant enadenotucirev (group B)-to investigate the effect of NK cells on overall anti-cancer efficacy in ovarian cancer. Because human adenoviruses do not replicate in murine cells, we utilized primary human NK cells from peripheral blood and ovarian cancer ascites. Our results show that dl922-947 and enadenotucirev do not infect NK cells, but induce contact-dependent activation and anti-cancer cytotoxicity against adenovirus-infected ovarian cancer cells. Moreover, manipulation of NK receptors DNAM-1 (DNAX accessory molecule-1) and TIGIT (T cell immunoreceptor with Ig and ITIM domains) significantly influences NK cytotoxicity against adenovirus-infected cells. Together, these results indicate that NK cells act to increase the activity of oncolytic adenovirus in ovarian cancer and suggest that strategies to augment NK activity further via the blockade of inhibitory NK receptor TIGIT could enhance therapeutic potential of OVs.

20.
J Clin Invest ; 130(6): 3221-3237, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191647

RESUMO

Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.


Assuntos
Movimento Celular/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Neutrófilos/patologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...