Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 57(1): 450-460, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31378002

RESUMO

Behavioral sensitization to psychostimulants hyperlocomotor effect is a useful model of addiction and craving. Particularly, cocaine sensitization in rats enhanced synaptic plasticity within the hippocampus, an important brain region for the associative learning processes underlying drug addiction. Nitric oxide (NO) is a neurotransmitter involved in both, hippocampal synaptic plasticity and cocaine sensitization. It has been previously demonstrated a key role of NOS-1/NO/sGC/cGMP signaling pathway in the development of cocaine sensitization and in the associated enhancement of hippocampal synaptic plasticity. The aim of the present investigation was to determine whether NOS-1 inhibition after development of cocaine sensitization was able to reverse it, and to characterize the involvement of the hippocampus in this phenomenon. Male Wistar rats were administered only with cocaine (15 mg/kg/day i.p.) for 5 days. Then, animals received 7-nitroindazole (NOS-1 inhibitor) either systemically for the next 5 days or a single intra-hippocampal administration. Development of sensitization and its expression after withdrawal were tested, as well as threshold for long-term potentiation in hippocampus, NOS-1, and CREB protein levels and gene expression. The results showed that NOS-1 protein levels and gene expression were increased only in sensitized animals as well as CREB gene expression. NOS-1 inhibition after sensitization reversed behavioral expression and the highest level of hippocampal synaptic plasticity. In conclusion, NO signaling within the hippocampus is critical for the development and expression of cocaine sensitization. Therefore, NOS-1 inhibition or NO signaling pathways interferences during short-term withdrawal after repeated cocaine administration may represent plausible pharmacological targets to prevent or reduce susceptibility to relapse.


Assuntos
Cocaína/farmacologia , Hipocampo/enzimologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal , Cocaína/administração & dosagem , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Indazóis/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Wistar
2.
J Nutr Biochem ; 61: 82-90, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30189366

RESUMO

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Reprodução/fisiologia , Animais , Peso Corporal , Ácidos Graxos Ômega-3/efeitos adversos , Feminino , Lactação , Masculino , Camundongos , Oócitos/fisiologia , Ovulação/fisiologia , Gravidez , Resultado da Gravidez , Progesterona/sangue , Puberdade , Reprodução/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Sêmen/fisiologia , Testosterona/sangue
3.
Brain Behav Immun ; 56: 156-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26916218

RESUMO

Neopterin is found at increased levels in biological fluids from individuals with inflammatory disorders. The biological role of this pteridine remains undefined; however, due to its capacity to increase hemeoxygenase-1 content, it has been proposed as a protective agent during cellular stress. Therefore, we investigated the effects of neopterin on motor, emotional and memory functions. To address this question, neopterin (0.4 and/or 4pmol) was injected intracerebroventricularly before or after the training sessions of step-down inhibitory avoidance and fear conditioning tasks, respectively. Memory-related behaviors were assessed in Swiss and C57BL/6 mice, as well as in Wistar rats. Moreover, the putative effects of neopterin on motor and anxiety-related parameters were addressed in the open field and elevated plus-maze tasks. The effects of neopterin on cognitive performance were also investigated after intraperitoneal lipopolysaccharide (LPS) administration (0.33mg/kg) in interleukin-10 knockout mice (IL-10(-/-)). It was consistently observed across rodent species that neopterin facilitated aversive memory acquisition by increasing the latency to step-down in the inhibitory avoidance task. This effect was related to a reduced threshold to generate the hippocampal long-term potentiation (LTP) process, and reduced IL-6 brain levels after the LPS challenge. However, neopterin administration after acquisition did not alter the consolidation of fear memories, neither motor nor anxiety-related parameters. Altogether, neopterin facilitated cognitive processes, probably by inducing an antioxidant/anti-inflammatory state, and by facilitating LTP generation. To our knowledge, this is the first evidence showing the cognitive enhancer property of neopterin.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Inibição Psicológica , Potenciação de Longa Duração/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Neopterina/farmacologia , Nootrópicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Medo/efeitos dos fármacos , Injeções Intraventriculares , Interleucina-10 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neopterina/administração & dosagem , Nootrópicos/administração & dosagem , Ratos , Ratos Wistar
4.
Gene ; 581(2): 139-45, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26827797

RESUMO

G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating intercellular interactions of fundamental physiological importance for survival including regulation of food intake, blood pressure, and hormonal sensing signaling, among other roles. Homeostatic alterations in the physiological status of GPCRs are often associated with underlying causes of disease, and to date, several orphan GPCRs are still uncharacterized. Findings from our previous study demonstrate that the Rhodopsin family protein GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in hypothalamus, amygdala, and ventral tegmental area, regions strictly interconnected and involved in the regulation of energy homeostasis and hedonic feeding. In this study, we provide a further anatomical characterization of GPR162 in mouse brain via in situ hybridization as well as detailed mRNA expression in a panel of rat tissues complementing a specie-specific mapping of the receptor. We also provide an attempt to demonstrate a functional implication of GPR162 in food intake-related behavior via antisense knockdown studies. Furthermore, we performed human genetic studies in which for the first time, variants of the GPR162 gene were associated with impairments in glucose homeostasis.


Assuntos
Glucose/metabolismo , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Adolescente , Animais , Encéfalo/metabolismo , Criança , Ingestão de Alimentos , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Especificidade da Espécie , Suécia , Distribuição Tecidual
5.
Psychopharmacology (Berl) ; 229(1): 41-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579428

RESUMO

RATIONALE: Repeated cocaine administration induces behavioral sensitization in about 50 % of treated animals. Nitric oxide could be involved in the acquisition and maintenance of behavioral cocaine effects, probably by activation of neuronal nitric oxide synthase (nNOS)/NO/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) signaling pathway, since inhibition of the nNOS enzyme attenuates development of sensitization in rats. On the other hand, increased cGMP availability by phosphodiesterase 5 inhibitors has been correlated to the misuse and recreational use of these agents and also to the concomitant use with illicit drugs in humans. Hippocampus is an important brain region for conditioning to general context previously associated to drug availability, influencing drug-seeking behavior and sensitization. Moreover, cocaine and other drugs of abuse can affect the strength of glutamate synapses in this structure, lastly modifying neuronal activity in main regions of the reward circuitry. OBJECTIVE: The objective of this study is to determine whether the pharmacological manipulation of nNOS/NO/sGC/cGMP signaling pathway altered changes induced by repeated cocaine exposure. RESULTS: The present investigation showed a relationship between behavioral cocaine sensitization, reduced threshold to generate long-term potentiation (LTP) in hippocampal dentate gyrus, and increased nNOS activity in this structure. However, when nNOS or sGC were inhibited, the number of sensitized animals was reduced, and the threshold to generate LTP was increased. The opposite occurred when cGMP availability was increased. CONCLUSION: We demonstrate a key role of the nNOS activity and NO/sGC/cGMP signaling pathway in the development of cocaine sensitization and in the associated enhancement of hippocampal synaptic transmission.


Assuntos
Cocaína/administração & dosagem , GMP Cíclico/metabolismo , Guanilato Ciclase/fisiologia , Hipocampo/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/fisiopatologia , Guanilato Ciclase/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Horm Behav ; 61(5): 758-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22504323

RESUMO

Due to its complexity, in combination with a lack of scientific reports, fur-chewing became one of the most challenging behavioral problems common to captive chinchillas. In the last years, the hypothesis that fur-chewing is an abnormal repetitive behavior and that stress plays a role in its development and performance has arisen. Here, we investigated whether a relationship existed between the expression and intensity of fur-chewing behavior, elevated urinary cortisol excretion and anxiety-related behaviors. Specifically, we evaluated the following parameters in behaviorally normal and fur-chewing animals of both sexes: (1) mean concentrations of urinary cortisol metabolites and (2) anxiety-like behavior in an elevated plus-maze test. Urinary cortisol metabolites were higher only in females that expressed the most severe form of the fur-chewing behavior (P≤0.05). Likewise, only fur-chewing females exhibited increased (P≤0.05) anxiety-like behaviors associated with the elevated plus-maze test. Overall, these data provided additional evidence to support the concept that fur-chewing is a manifestation of physiological stress in chinchilla, and that a female sex bias exists in the development of this abnormal behavior.


Assuntos
Glândulas Suprarrenais/metabolismo , Ansiedade/etiologia , Comportamento Animal/fisiologia , Chinchila/fisiologia , Mastigação/fisiologia , Glândulas Suprarrenais/fisiologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/urina , Chinchila/metabolismo , Chinchila/psicologia , Chinchila/urina , Feminino , Cabelo , Hidrocortisona/metabolismo , Hidrocortisona/urina , Masculino , Aprendizagem em Labirinto , Caracteres Sexuais , Estresse Psicológico/fisiopatologia
7.
FEBS J ; 278(24): 4881-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21981325

RESUMO

The Rhodopsin family of G protein coupled receptors (GPCRs) includes the phylogenetic α-group consisting of about 100 human members. The α-group is the only group of GPCRs that has many receptors for biogenic amines which are major drug targets. Several members of this group are orphan receptors and their functions are elusive. In this study we present a detailed phylogenetic and anatomical characterization of the Gpr153 receptor and also attempt to study its functional role. We identified the homologue of Gpr153 in the elephant shark genome and phylogenetic and synteny analyses revealed that Gpr162 and Gpr153 share a common ancestor that split most likely through a duplication event before the divergence of the tetrapods and the teleost lineage. A quantitative real-time PCR study reveals widespread expression of Gpr153 in the central nervous system and all the peripheral tissues investigated. Detailed in situ hybridization on mouse brain showed specifically high expression in the thalamus, cerebellum and the arcuate nucleus. The antisense oligodeoxynucleotide knockdown of Gpr153 caused a slight reduction in food intake and the elevated plus maze test showed significant reduction in the percentage of time spent in the centre square, which points towards a probable role in decision making. This report provides the first detailed characterization of the evolution, expression and primary functional properties of the Gpr153 gene.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Cerebelo/metabolismo , Receptores Acoplados a Proteínas G/genética , Tálamo/metabolismo , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Ingestão de Alimentos , Evolução Molecular , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Alinhamento de Sequência , Tubarões/genética , Sintenia
8.
Peptides ; 32(11): 2367-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21820473

RESUMO

Ghrelin (Ghr) is a peptide produced peripherally and centrally. It participates in the modulation of different biological processes. In our laboratory we have shown that (a) Ghr administration, either intracerebroventricular or directly into the hippocampus enhanced memory consolidation in a step down test in rats (b) the effect of Ghr upon memory decreases in animals pretreated with a serotonin (5-HT) reuptake inhibitor, Fluoxetine, suggesting that Ghr effects in the hippocampus could be related to the availability of 5-HT. It has been demonstrated that Ghr inhibits 5-HT release from rat hypothalamic synaptosomes. Taking in mint these evidences, we studied the release of radioactive 5-HT to the superfusion medium from hippocampal slices treated with two doses of Ghr (0.3 and 3 nm/µl). Ghr inhibited significantly the 5-HT release in relation to those superfused with artificial cerebrospinal fluid (ACSF) (H = 9.48, df = 2, p ≤ 0.05). In another set of experiments, Ghr was infused into the CA1 area of hippocampus of the rats immediately after training in the step down test and the 5-HT release from slices was studied 24h after Ghr injection showing that in this condition also the 5-HT release was inhibited (H = 11.72, df = 1, p ≤ 0.05). In conclusion, results provide additional evidence about the neurobiological bases of Ghr action in hippocampus.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Fluoxetina/farmacologia , Grelina , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Fluoxetina/efeitos adversos , Grelina/administração & dosagem , Grelina/uso terapêutico , Hipocampo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Memória/fisiologia , Microtomia , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Trítio/análise
9.
Cell Mol Neurobiol ; 30(7): 1067-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20582463

RESUMO

Leucine accumulates in fluids and tissues of patients affected by maple syrup urine disease, an inherited metabolic disorder, predominantly characterized by neurological dysfunction. Although, a variable degree of cognition/psychomotor delay/mental retardation is found in a considerable number of individuals affected by this deficiency, the mechanisms underlying the neuropathology of these alterations are still not defined. Therefore, the aim of this study was to investigate the effect of acute intra-hippocampal leucine administration in the step-down test in rats. In addition, the leucine effects on the electrophysiological parameter, long-term potentiation generation, and on the activities of the respiratory chain were also investigated. Male Wistar rats were bilaterally administrated with leucine (80 nmol/hippocampus; 160 nmol/rat) or artificial cerebrospinal fluid (controls) into the hippocampus immediately post-training in the behavioral task. Twenty-four hours after training in the step-down test, the latency time was evaluated and afterwards animals were sacrificed for assessing the ex vivo biochemical measurements. Leucine-treated animals showed impairment in memory consolidation and a complete inhibition of long-term potentiation generation at supramaximal stimulation. In addition, a significant increment in complex IV activity was observed in hippocampus from leucine-administered rats. These data strongly indicate that leucine compromise memory consolidation, and that impairment of long-term potentiation generation and unbalance of the respiratory chain may be plausible mechanisms underlying the deleterious leucine effect on cognition.


Assuntos
Hipocampo , Leucina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Eletrofisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Testes Neuropsicológicos , Ratos , Ratos Wistar
10.
Physiol Behav ; 101(1): 117-23, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20451534

RESUMO

Although the hypothalamus has been long considered the main ghrelin (Ghr) target organ mediating orexigenic effects, recently it has been shown that in-vivo Ghr hippocampus administration improves learning and memory in the inhibitory avoidance paradigm. However, the possible mechanisms underlying this memory facilitation effect have not been clarified. Given that the biochemical memory cascade into the hippocampus involves nitric oxide (NO) synthesis via NO synthase (NOS) activation, we investigated 1) if Ghr administration modulated NOS activity in the hippocampus; and 2) if hippocampal NOS inhibition influenced Ghr-induced memory facilitation, using a behavioral paradigm, biochemical determinations and an electrophysiological model. Our results showed that intra-hippocampal Ghr administration increased the NOS activity in a dose dependent manner, and reduced the threshold for LTP generation in dentate gyrus of rat hippocampus. Moreover, pre-administration of NG-nitro-l-arginine (l-NOArg) in the hippocampus partially prevented the Ghr-induced memory improvement, abolished the increase in NOS activity, and prevented the decreased threshold to generate LTP induced by Ghr. These findings suggest that activation of the NOS/NO pathway in hippocampus participates in the effects of Ghr on memory consolidation and is related with plastic properties of the hippocampal three-synaptic loop.


Assuntos
Giro Denteado/enzimologia , Grelina/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Óxido Nítrico Sintase/metabolismo , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Grelina/administração & dosagem , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Óxido Nítrico Sintase/efeitos dos fármacos , Ratos , Ratos Wistar , Análise de Regressão , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Peptides ; 31(6): 1190-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20214944

RESUMO

In a previous paper we have demonstrated that the orexigenic peptide Ghrelin (Ghr), increases memory retention in rats and mice. In the present work we evaluated the Ghr effect when it was administered previous the training session or previous the test session (24h after training) on the memory performance, using step-down test. The results showed that the intra-hippocampal Ghr administration previous the training session improved the long-term memory in this task, but did not modify the short-term memory. Nevertheless, when the Ghr was administrated previous the test session, no changes were observed in the memory performance. Taking into account these results and other previously published by our group, we could hypothesizes that Ghr may modulate specific molecular intermediates involved in memory acquisition/consolidation but not in the retrieval.


Assuntos
Comportamento Animal/efeitos dos fármacos , Grelina/farmacologia , Memória/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Aprendizagem da Esquiva/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Injeções Intraventriculares , Memória de Curto Prazo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Neurobiol Learn Mem ; 91(4): 402-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19146965

RESUMO

Ghrelin (Grh) is an endogenous ligand for the growth hormone secretagogue receptor. Although Ghr stimulates feeding in rats, it inhibits feeding in neonatal chicks. However, little is known about other central behavioral effects of Ghr. Therefore, we investigated the Ghr effects, injected intracerebroventricularly, on anxiety and memory retention of neonatal chicks in an Open Field test and in a one-trial passive avoidance task, respectively. In the Open Field test, the administration of Ghr in a dose-dependent manner increased the latency to ambulate but decreased ambulation activity, indicating an anxiogenic effect. Furthermore, chicks trained on a passive avoidance task and injected with a dose of 30pmol of Ghr immediately after training showed an impairment of memory retention. However, there were no significant effects on the number of pecks during the pretraining, training, retention and discrimination. In addition, different doses of Ghr produced an inhibition in food intake at different times after injection. Our results indicate that Ghr induces anxiogenesis in chicks. Moreover, we have shown for the first time that Ghr can decrease memory retention in a non-mammalian species, suggesting that Ghr may play an important role in the processes of memory retention in birds.


Assuntos
Ansiedade/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Comportamento Alimentar/fisiologia , Grelina/administração & dosagem , Memória/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Galinhas , Ingestão de Alimentos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Grelina/fisiologia , Masculino , Atividade Motora
13.
J Nat Prod ; 72(1): 156-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19067593

RESUMO

The present study describes the effects of sauroine (1), the main alkaloid obtained from Huperzia saururus, on memory retention and learning. To evaluate this, electrophysiological experiments and behavioral tests (step down) were performed on male Wistar rats. The results showed that 1 improved memory retention in the step-down test, significantly increasing hippocampal plasticity. Thus, 1 seems to be a constituent responsible for the activity claimed in folk medicine for H. saururus in Argentina.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Comportamento/efeitos dos fármacos , Huperzia/química , Memória/efeitos dos fármacos , Plantas Medicinais/química , Alcaloides/química , Animais , Argentina , Hipocampo/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Biochem Biophys Res Commun ; 352(4): 907-12, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17157813

RESUMO

Obestatin is a peptide hormone that is derived from the same polypeptide precursor (preprogrelin) as ghrelin, but it acts in opposing way on ingestive behavior. Our previous studies showed that ghrelin affects memory and anxiety. Here, we studied the possible effects of icv obestatin injection in rats upon memory retention (using two different paradigms), anxiety like behavior (plus maze test), and food intake. Obestatin induces an increase in the percentage of open arms entries (Obestatin 3.0nmol/rat: 61.74+/-1.81), and percentage of time spent in open arms (Obestatin 3.0nmol/rat: 72.07+/-4.21) in relation to the control (33.31+/-1.54; 25.82+/-1.68), indicating an anxiolytic effect. The two doses of obestatin increased latency time in a step down test and the percentage time of novel object exploration, suggesting that the peptide influences learning and memory processes that involve the hippocampus and the amygdala. This report provides evidence indicating that obestatin effects are functionally opposite on anxiety and hunger to the ghrelin effects, while both these related peptides increase memory retention.


Assuntos
Ansiolíticos/farmacologia , Memória/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
15.
Regul Pept ; 140(1-2): 65-73, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17189653

RESUMO

Ghrelin (Ghr) is an appetite stimulating hormone that is produced peripherally, by the stomach, and centrally as well. Previous investigations show that Ghr increases food intake and memory retention in rats, and that extra-hypothalamic structures, such as the hippocampus, participate in these effects. In the present work we analyzed the effect on food intake and memory retention induced by Ghr after serotonin (5-HT) availability modification at the serotoninergic synapses. Animals only treated with a selective serotonin reuptake inhibitor (SSRI), fluoxetine (FLU) 5 mg/kg or clomipramine (CLO) 2.5 and 5 mg/kg, showed a significant reduction in both food intake and memory retention. On the contrary, Ghr administration induces a significant increase in food intake and a dose-dependent increase in short and long term memory retention. When the animals were treated with FLU prior to Ghr injection, the food intake induced, as well as the expression of short and long term memory retention, was decreased. In conclusion, evidence presented in this paper suggests that the effects of Ghr on both feeding and memory retention in extra-hypothalamic structures such as the hippocampus, could depend on the availability of 5-HT.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Fluoxetina/farmacologia , Memória/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Clomipramina/farmacologia , Relação Dose-Resposta a Droga , Grelina , Hipocampo/efeitos dos fármacos , Masculino , Modelos Biológicos , Ratos , Ratos Wistar
16.
Peptides ; 27(9): 2300-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16621156

RESUMO

The aim of this work was to investigate if MCH modifies the feeding and freezing responses in rats exposed to stressful stimuli. We used a basic version of contextual fear, where one group of rats were placed in a novel environment and two different groups were exposed to footshock paradigms, one of them escapable and the other one inescapable. At the end of each treatment, freezing and feeding were measured. Only the animals exposed to inescapable footshock paradigm showed significant increase in the food intake and freezing behavior in comparison to the control animals. The MCH administration (intra-hippocampal or intra-amygdaline) reverted these effects elicited by inescapable footshock. Results presented in this paper lead us to the assumption that the anxiolytic effect of the peptide is responsible for the reversion of the IS effects.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hormônios Hipotalâmicos/uso terapêutico , Melaninas/uso terapêutico , Hormônios Hipofisários/uso terapêutico , Estresse Fisiológico/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Diazepam/metabolismo , Diazepam/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Estresse Fisiológico/psicologia , Fatores de Tempo
17.
Biochem Biophys Res Commun ; 313(3): 635-41, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14697239

RESUMO

Ghrelin is a peptide hormone produced and secreted from the stomach. Hypothalamic injection of the peptide increases food intake but it is not known if the peptide affects other brain regions. We measured several behavioral parameters such as anxiety (elevated plus maze), memory retention (step down test), and food intake after injections of different doses of the peptide in the hippocampus, amygdala, and dorsal raphe nucleus (DRN). The injection of ghrelin in the hippocampus and DRN significantly and dose dependently increased food intake in relation to controls rats, while injections into the amygdala did not affect the food intake. We also show for the first time that ghrelin clearly and dose dependently increases memory retention in the hippocampus, amygdala, and DRN. Moreover, ghrelin at different potencies induced anxiogenesis in these brain structures while the highest dose of 3 nmol/microl was effective in all of them. The comparison of sensitivity of each brain structure indicates a specific role of them for each of the behaviors studied. The results provide new insight in to the anatomical substrate and the functional role of extrahypothalamic ghrelin targets in the CNS.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Hormônios Peptídicos/fisiologia , Núcleos da Rafe/fisiologia , Animais , Comportamento Animal , Relação Dose-Resposta a Droga , Comportamento Alimentar , Grelina , Masculino , Aprendizagem em Labirinto , Memória , Hormônios Peptídicos/metabolismo , Peptídeos/química , Ratos , Ratos Wistar , Especificidade por Substrato , Fatores de Tempo
18.
Biochem Biophys Res Commun ; 299(5): 739-43, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12470640

RESUMO

Ghrelin is a peptide found in the hypothalamus and stomach that stimulates food intake and whose circulating concentrations are affected by nutritional state. Very little is known about other central behavioral effects of ghrelin, and thus, we investigated the effects of ghrelin on anxiety and memory retention. The peptide was injected intracerebroventricularly in rats and we performed open-field, plus-maze, and step-down tests (inhibitory avoidance). The administration of ghrelin increased freezing in the open field and decreased the number of entries into the open spaces and the time spent on the open arms in the plus-maze, indicating an anxiogenic effect. Moreover, the peptide increased in a dose-dependent manner the latency time in the step-down test. A rapid and prolonged increase in food intake was also observed. Our results indicate that ghrelin induces anxiogenesis in rats. Moreover, we show for the first time that ghrelin increases memory retention, suggesting that the peptide may influence processes in the hippocampus.


Assuntos
Ansiedade , Memória , Hormônios Peptídicos/farmacologia , Animais , Regulação do Apetite/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Grelina , Habituação Psicofisiológica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Hormônios Peptídicos/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...