Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23403, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169850

RESUMO

The Covid-19 infection outbreak led to a global epidemic, and although several vaccines have been developed, the appearance of mutations has allowed the virus to evade the immune response. Added to this is the existing risk of the appearance of new emerging viruses. Therefore, it is necessary to explore novel antiviral therapies. Here, we investigate the potential in vitro of plant extracts to modulate cellular stress and inhibit murine hepatitis virus (MHV)-A59 replication. L929 cells were treated with P2Et (Caesalpinia spinosa) and Anamu SC (Petiveria alliacea) plant extracts during infection and virus production, ROS (reactive oxygen species), UPR (unfolded protein response), and autophagy were assessed. P2Et inhibited virus replication and attenuated both ROS production and UPR activation induced during infection. In contrast, the sustained presence of Anamu SC during viral adsorption and replication was required to inhibit viral infection, tending to induce pro-oxidant effects, and increasing UPR gene expression. Notably, the loss of the PERK protein resulted in a slight decrease in virus yield, suggesting a potential involvement of this UPR pathway during replication. Intriguingly, both extracts either maintained or increased the calreticulin surface exposure induced during infection. In conclusion, our findings highlight the development of antiviral natural plant extracts that differentially modulate cellular stress.

2.
Pregnancy Hypertens ; 22: 181-190, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33059327

RESUMO

BACKGROUND: Preeclampsia (PE) is a frequently occurring multisystemic disease affecting ~5% of pregnancies. PE patients may develop HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet), a mother and foetus life-threatening condition. Research into HELLP's genetic origin has been relatively unsuccessful, mainly because normal placental function and blood pressure regulation involve the fine-regulation of hundreds of genes. OBJECTIVE: To identify new genes and mutations constituting potential biomarkers for HELLP syndrome. STUDY DESIGN: The present case-control study involved whole-exome sequencing of 79 unrelated HELLP women. Candidate variants were screened in a control population constituted by 176 individuals. Stringent bioinformatics filters were used for selecting potentially etiological sequence variants in a subset of 487 genes. We used robust in silico mutation modelling for predicting the potential effect on protein structure. RESULTS: We identified numerous sequence variants in genes related to angiogenesis/coagulation/blood pressure regulation, cell differentiation/communication/adhesion, cell cycle and transcriptional gene regulation, extracellular matrix biology, lipid metabolism and immunological response. Five sequence variants generated premature stop codons in genes playing an essential role in placental physiology (STOX1, PDGFD, IGF2, MMP1 and DNAH11). Six variants (ERAP1- p.Ile915Thr, ERAP2- p.Leu837Ser, COMT-p.His192Gln, CSAD-p.Pro418Ser, CDH1- p.Ala298Thr and CCR2-p.Met249Lys) led to destabilisation of protein structure as they had significant energy and residue interaction-related changes. We identified at least two mutations in 57% of patients, arguing in favour of a polygenic origin for the HELLP syndrome. CONCLUSION: Our results provide novel evidence regarding PE/HELLP's genetic origin, leading to new biomarkers, having potential clinical usefulness, being proposed.


Assuntos
Sequenciamento do Exoma/métodos , Síndrome HELLP/genética , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Síndrome HELLP/sangue , Humanos , Gravidez
4.
Hum Reprod ; 32(7): 1512-1520, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505269

RESUMO

STUDY QUESTION: Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? SUMMARY ANSWER: WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. WHAT IS KNOWN ALREADY: POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study performed on 69 women affected by POI. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. LIMITATIONS, REASONS FOR CAUTION: It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WIDER IMPLICATIONS OF THE FINDINGS: WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Moleculares , Mutação , Insuficiência Ovariana Primária/genética , Adulto , Substituição de Aminoácidos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Estudos de Coortes , Biologia Computacional , Sistemas Inteligentes , Feminino , França , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária/metabolismo , Estabilidade Proteica , Encaminhamento e Consulta , Estudos Retrospectivos , Sequenciamento do Exoma , Adulto Jovem
5.
Hum Mol Genet ; 26(16): 3161-3166, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28541421

RESUMO

Premature ovarian insufficiency (POI) is a frequent pathology that affects women under 40 years of age, characterized by an early cessation of menses and high FSH levels. Despite recent progresses in molecular diagnosis, the etiology of POI remains idiopathic in most cases. Whole-exome sequencing of members of a Colombian family affected by POI allowed us to identify a novel homozygous donor splice-site mutation in the meiotic gene MSH4 (MutS Homolog 4). The variant followed a strict mendelian segregation within the family and was absent in a cohort of 135 women over 50 years of age without history of infertility, from the same geographical region as the affected family. Exon trapping experiments showed that the splice-site mutation induced skipping of exon 17. At the protein level, the mutation p.Ile743_Lys785del is predicted to lead to the ablation of the highly conserved Walker B motif of the ATP-binding domain, thus inactivating MSH4. Our study describes the first MSH4 mutation associated with POI and increases the number of meiotic/DNA repair genes formally implicated as being responsible for this condition.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Insuficiência Ovariana Primária/genética , Adulto , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Éxons , Feminino , Homozigoto , Humanos , Menopausa Precoce/genética , Linhagem , Sítios de Splice de RNA , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...