Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 524, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953320

RESUMO

In Pompe disease, the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) causes skeletal and cardiac muscle weakness, respiratory failure, and premature death. While enzyme replacement therapy using recombinant human GAA (rhGAA) can significantly improve patient outcomes, detailed disease mechanisms and incomplete therapeutic effects require further studies. Here we report a three-dimensional primary human skeletal muscle ("myobundle") model of infantile-onset Pompe disease (IOPD) that recapitulates hallmark pathological features including reduced GAA enzyme activity, elevated glycogen content and lysosome abundance, and increased sensitivity of muscle contractile function to metabolic stress. In vitro treatment of IOPD myobundles with rhGAA or adeno-associated virus (AAV)-mediated hGAA expression yields increased GAA activity and robust glycogen clearance, but no improvements in stress-induced functional deficits. We also apply RNA sequencing analysis to the quadriceps of untreated and AAV-treated GAA-/- mice and wild-type controls to establish a Pompe disease-specific transcriptional signature and reveal novel disease pathways. The mouse-derived signature is enriched in the transcriptomic profile of IOPD vs. healthy myobundles and partially reversed by in vitro rhGAA treatment, further confirming the utility of the human myobundle model for studies of Pompe disease and therapy.


Assuntos
Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo II/terapia , Contração Muscular , Músculo Esquelético/citologia , Miocárdio/citologia , Engenharia Tecidual/métodos , alfa-Glucosidases/metabolismo , Animais , Dependovirus/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/genética
2.
Nat Commun ; 8(1): 1825, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184059

RESUMO

Despite increased use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for drug development and disease modeling studies, methods to generate large, functional heart tissues for human therapy are lacking. Here we present a "Cardiopatch" platform for 3D culture and maturation of hiPSC-CMs that after 5 weeks of differentiation show robust electromechanical coupling, consistent H-zones, I-bands, and evidence for T-tubules and M-bands. Cardiopatch maturation markers and functional output increase during culture, approaching values of adult myocardium. Cardiopatches can be scaled up to clinically relevant dimensions, while preserving spatially uniform properties with high conduction velocities and contractile stresses. Within window chambers in nude mice, cardiopatches undergo vascularization by host vessels and continue to fire Ca2+ transients. When implanted onto rat hearts, cardiopatches robustly engraft, maintain pre-implantation electrical function, and do not increase the incidence of arrhythmias. These studies provide enabling technology for future use of hiPSC-CM tissues in human heart repair.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/transplante , Engenharia Tecidual/métodos , Animais , Arritmias Cardíacas/terapia , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Nus , Contração Miocárdica/fisiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Sarcômeros
3.
Biomaterials ; 111: 66-79, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27723557

RESUMO

Engineered cardiac tissues hold promise for cell therapy and drug development, but exhibit inadequate function and maturity. In this study, we sought to significantly improve the function and maturation of rat and human engineered cardiac tissues. We developed dynamic, free-floating culture conditions for engineering "cardiobundles", 3-dimensional cylindrical tissues made from neonatal rat cardiomyocytes or human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in fibrin-based hydrogel. Compared to static culture, 2-week dynamic culture of neonatal rat cardiobundles significantly increased expression of sarcomeric proteins, cardiomyocyte size (∼2.1-fold), contractile force (∼3.5-fold), and conduction velocity of action potentials (∼1.4-fold). The average contractile force per cross-sectional area (59.7 mN/mm2) and conduction velocity (52.5 cm/s) matched or approached those of adult rat myocardium, respectively. The inferior function of statically cultured cardiobundles was rescued by transfer to dynamic conditions, which was accompanied by an increase in mTORC1 activity and decline in AMPK phosphorylation and was blocked by rapamycin. Furthermore, dynamic culture effects did not stimulate ERK1/2 pathway and were insensitive to blockers of mechanosensitive channels, suggesting increased nutrient availability rather than mechanical stimulation as the upstream activator of mTORC1. Direct comparison with phenylephrine treatment confirmed that dynamic culture promoted physiological cardiomyocyte growth rather than pathological hypertrophy. Optimized dynamic culture conditions also augmented function of human cardiobundles made reproducibly from cardiomyocytes derived from multiple hPSC lines, resulting in significantly increased contraction force (∼2.5-fold) and conduction velocity (∼1.4-fold). The average specific force of 23.2 mN/mm2 and conduction velocity of 25.8 cm/s approached the functional metrics of adult human myocardium. In conclusion, we have developed a versatile methodology for engineering cardiac tissues with a near-adult functional output without the need for exogenous electrical or mechanical stimulation, and have identified mTOR signaling as an important mechanism for advancing tissue maturation and function in vitro.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Coração/crescimento & desenvolvimento , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos/métodos , Engenharia Tecidual/métodos , Animais , Órgãos Bioartificiais , Proliferação de Células/fisiologia , Células Cultivadas , Fibrina/química , Humanos , Hidrogéis/química , Técnicas de Cultura de Órgãos/instrumentação , Ratos , Engenharia Tecidual/instrumentação , Alicerces Teciduais
4.
Nat Commun ; 7: 10862, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983594

RESUMO

Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.


Assuntos
Encéfalo/citologia , Reprogramação Celular , Imageamento Tridimensional , Neurônios/citologia , Neurônios/transplante , Alicerces Teciduais/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Polímeros/química , Fatores de Transcrição/metabolismo
5.
Curr Opin Chem Eng ; 7: 57-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25599018

RESUMO

Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications.

7.
J Biomol Screen ; 17(9): 1151-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22811477

RESUMO

Effective screening methodologies for cells are challenged by the divergent and heterogeneous nature of phenotypes inherent to stem cell cultures, particularly on engineered biomaterial surfaces. In this study, we showcase a high-content, confocal imaging-based methodology to parse single-cell phenotypes by quantifying organizational signatures of specific subcellular reporter proteins and applied this profiling approach to three human stem cell types (embryonic-human embryonic stem cell [hESC], induced pluripotent-induced pluripotent stem cell [iPSC], and mesenchymal-human mesenchymal stem cell [hMSC]). We demonstrate that this method could distinguish self-renewing subpopulations of hESCs and iPSCs from heterogeneous populations. This technique can also provide insights into how incremental changes in biomaterial properties, both physiochemical and mechanical, influence stem cell fates by parsing the organization of stem cell proteins. For example, hMSCs cultured on polymeric films with varying degrees of poly(ethylene glycol) to modulate osteogenic differentiation were parsed using high-content organization of the cytoskeletal protein F-actin. In addition, hMSCs cultured on a self-assembled monolayer platform featuring compositional gradients were screened and descriptors obtained to correlate substrate variations with adipogenic lineage commitment. Taken together, high-content imaging of structurally sensitive proteins can be used as a tool to identify stem cell phenotypes at the single-cell level across a diverse range of culture conditions and microenvironments.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/análise , Antígenos Nucleares/análise , Microambiente Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Associadas à Matriz Nuclear/análise , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Antígenos Nucleares/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Proteínas de Ciclo Celular , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteogênese , Polietilenoglicóis/química , Análise de Componente Principal , Fatores de Transcrição SOXB1/metabolismo , Alicerces Teciduais/química
8.
FASEB J ; 26(8): 3240-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22542683

RESUMO

Substrates used to culture human embryonic stem cells (hESCs) are typically 2-dimensional (2-D) in nature, with limited ability to recapitulate in vivo-like 3-dimensional (3-D) microenvironments. We examined critical determinants of hESC self-renewal in poly-d-lysine-pretreated synthetic polymer-based substrates with variable microgeometries, including planar 2-D films, macroporous 3-D sponges, and microfibrous 3-D fiber mats. Completely synthetic 2-D substrates and 3-D macroporous scaffolds failed to retain hESCs or support self-renewal or differentiation. However, synthetic microfibrous geometries made from electrospun polymer fibers were found to promote cell adhesion, viability, proliferation, self-renewal, and directed differentiation of hESCs in the absence of any exogenous matrix proteins. Mechanistic studies of hESC adhesion within microfibrous scaffolds indicated that enhanced cell confinement in such geometries increased cell-cell contacts and altered colony organization. Moreover, the microfibrous scaffolds also induced hESCs to deposit and organize extracellular matrix proteins like laminin such that the distribution of laminin was more closely associated with the cells than the Matrigel treatment, where the laminin remained associated with the coated fibers. The production of and binding to laminin was critical for formation of viable hESC colonies on synthetic fibrous scaffolds. Thus, synthetic substrates with specific 3-D microgeometries can support hESC colony formation, self-renewal, and directed differentiation to multiple lineages while obviating the stringent needs for complex, exogenous matrices. Similar scaffolds could serve as tools for developmental biology studies in 3-D and for stem cell differentiation in situ and transplantation using defined humanized conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Alicerces Teciduais , Biopolímeros , Adesão Celular , Diferenciação Celular , Proliferação de Células , Colágeno , Combinação de Medicamentos , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Laminina/biossíntese , Polilisina/farmacologia , Proteoglicanas , Estereoisomerismo , Tirosina/análogos & derivados
9.
Biointerphases ; 7(1-4): 22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22589065

RESUMO

This article focuses on elucidating the key presentation features of neurotrophic ligands at polymer interfaces. Different biointerfacial configurations of the human neural cell adhesion molecule L1 were established on two-dimensional films and three-dimensional fibrous scaffolds of synthetic tyrosine-derived polycarbonate polymers and probed for surface concentrations, microscale organization, and effects on cultured primary neurons and neural stem cells. Underlying polymer substrates were modified with varying combinations of protein A and poly-D-lysine to modulate the immobilization and presentation of the Fc fusion fragment of the extracellular domain of L1 (L1-Fc). When presented as an oriented and multimeric configuration from protein A-pretreated polymers, L1-Fc significantly increased neurite outgrowth of rodent spinal cord neurons and cerebellar neurons as early as 24 h compared to the traditional presentation via adsorption onto surfaces treated with poly-D-lysine. Cultures of human neural progenitor cells screened on the L1-Fc/polymer biointerfaces showed significantly enhanced neuronal differentiation and neuritogenesis on all protein A oriented substrates. Notably, the highest degree of ßIII-tubulin expression for cells in 3-D fibrous scaffolds were observed in protein A oriented substrates with PDL pretreatment, suggesting combined effects of cell attachment to polycationic charged substrates with subcellular topography along with L1-mediated adhesion mediating neuronal differentiation. Together, these findings highlight the promise of displays of multimeric neural adhesion ligands via biointerfacially engineered substrates to "cooperatively" enhance neuronal phenotypes on polymers of relevance to tissue engineering.


Assuntos
Proliferação de Células , Materiais Revestidos Biocompatíveis , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/fisiologia , Polímeros , Animais , Células Cultivadas , Ratos , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...