Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033327

RESUMO

The voltage-gated K+ channel, hERG, is a member of the Ether-a-go-go family and plays a critical role in heart physiology by repolarizing cardiac myocytes (1-4). The functional channel is comprised of four subunits, each including six transmembrane domains with large intracellular domains, a Per-ARNT-Sim (PAS) domain in the amino terminus, and the cyclic nucleotide-binding homology domain (CNBHD) in the carboxy terminus. Interactions between the PAS domain and CNBHD have been implicated in hERG channel deactivation (5-7), but how these domains interact during channel gating remains largely unknown.

2.
Mol Biol Cell ; : mbcE23120494, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024255

RESUMO

Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated a lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.

3.
JTCVS Tech ; 25: 81-93, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899102

RESUMO

Objectives: To assess feasibility, safety, and early efficacy of robotic-enhanced epicardial ablation (RE-EA) as first stage of a hybrid approach to patients with persistent (PsAF) and long-standing atrial fibrillation (LSAF). Methods: Single-center, retrospective analysis of patients with documented PsAF and LSAF who underwent RE-EA followed by catheter-guided endocardial ablation. Postoperatively, patients were monitored for major adverse events and underwent rhythm follow-up at 3 and 12 months. Results: Between January 2021 and June 2023, we performed RE-EA in 64 patients (73.5% male, CHA2DS2-VASc 2.7 ± 1.6, BMI 34.1 ± 6.3 kg/m2). Mean AF preoperative duration and left atrial volume index were, respectively, 85 months and 47.5 mL/m2. Through the robotic approach, the intended lesion set was completed in all patients without cardiopulmonary bypass support, conversion to thoracotomy/sternotomy, blood transfusions, or perioperative mortality. The average LOS was 1.7 days, with only 1 patient requiring intensive care unit admission and >65% of patients discharged within 24 hours. At follow-up, 2 (3.1%) patients experienced new left pleural effusion or hemidiaphragm paralysis requiring treatment. There were no readmissions related to AF, stroke, thromboembolic events, or deaths. The mean interval between the epicardial and endocardial stages of the procedure was 5.9 months. Rhythm follow-up showed AF resolution in 73.4% and 71.9% of patients at 3 and 12 months, respectively. Conclusions: RE-EA is a feasible and safe, first-stage approach for the treatment of patients with PsAF and LSAF. It improves exposure of the intended targets, favors short hospital stay, and facilitates return to activity with satisfactory AF treatment in the short term.

4.
Food Chem Toxicol ; 189: 114716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735358

RESUMO

Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.


Assuntos
Ração Animal , Galinhas , Plantas Geneticamente Modificadas , Zea mays , Animais , Zea mays/genética , Plantas Geneticamente Modificadas/genética , Ração Animal/análise , Masculino , Ratos , Feminino , Ratos Sprague-Dawley , Tamanho do Órgão/efeitos dos fármacos , Dieta , Peso Corporal/efeitos dos fármacos
5.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38525126

RESUMO

ORF3a is an accessory protein expressed by all human pathogen coronaviruses and is the only accessory protein that strongly affects viral fitness. Its deletion reduces severity in both alpha- and beta-coronaviruses, demonstrating a conserved function across the superfamily. Initially regarded as a non-selective cation channel, ORF3a's function is now disputed. Here, we show that ORF3a from SARS, but not SARS-CoV-2, promotes potassium conductance in a yeast model system commonly used to study potassium channels. ORF3a-mediated potassium conductance is also sensitive to inhibitors, including emodin, carbamazepine, and nifedipine. This model may be used in future studies on ORF3a and related proteins.

6.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490181

RESUMO

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Assuntos
Glicoproteínas da Zona Pelúcida , Humanos , Masculino , Sêmen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Feminino
7.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787392

RESUMO

After fertilization, maternally contributed factors to the egg initiate the transition to pluripotency to give rise to embryonic stem cells, in large part by activating de novo transcription from the embryonic genome. Diverse mechanisms coordinate this transition across animals, suggesting that pervasive regulatory remodeling has shaped the earliest stages of development. Here, we show that maternal homologs of mammalian pluripotency reprogramming factors OCT4 and SOX2 divergently activate the two subgenomes of Xenopus laevis, an allotetraploid that arose from hybridization of two diploid species ~18 million years ago. Although most genes have been retained as two homeologous copies, we find that a majority of them undergo asymmetric activation in the early embryo. Chromatin accessibility profiling and CUT&RUN for modified histones and transcription factor binding reveal extensive differences in predicted enhancer architecture between the subgenomes, which likely arose through genomic disruptions as a consequence of allotetraploidy. However, comparison with diploid X. tropicalis and zebrafish shows broad conservation of embryonic gene expression levels when divergent homeolog contributions are combined, implying strong selection to maintain dosage in the core vertebrate pluripotency transcriptional program, amid genomic instability following hybridization.


Assuntos
Cromossomos , Peixe-Zebra , Animais , Xenopus laevis/genética , Peixe-Zebra/genética , Cromatina , Genoma , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética
8.
J Gen Physiol ; 155(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561060

RESUMO

Fertilization of an egg by more than one sperm, a condition known as polyspermy, leads to gross chromosomal abnormalities and is embryonic lethal for most animals. Consequently, eggs have evolved multiple processes to stop supernumerary sperm from entering the nascent zygote. For external fertilizers, such as frogs and sea urchins, fertilization signals a depolarization of the egg membrane, which serves as the fast block to polyspermy. Sperm can bind to, but will not enter, depolarized eggs. In eggs from the African clawed frog, Xenopus laevis, the fast block depolarization is mediated by the Ca2+-activated Cl- channel TMEM16A. To do so, fertilization activates phospholipase C, which generates IP3 to signal a Ca2+ release from the ER. Currently, the signaling pathway by which fertilization activates PLC during the fast block remains unknown. Here, we sought to uncover this pathway by targeting the canonical activation of the PLC isoforms present in the X. laevis egg: PLCγ and PLCß. We observed no changes to the fast block in X. laevis eggs inseminated in inhibitors of tyrosine phosphorylation, used to stop activation of PLCγ, or inhibitors of Gαq/11 pathways, used to stop activation of PLCß. These data suggest that the PLC that signals the fast block depolarization in X. laevis is activated by a novel mechanism.


Assuntos
Cálcio , Fertilização , Animais , Masculino , Fertilização/fisiologia , Xenopus laevis/metabolismo , Cálcio/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo
9.
Transgenic Res ; 32(5): 423-435, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37415055

RESUMO

Fundamental to the safety assessment of genetically modified (GM) crops is the concept of negligible risk for newly expressed proteins for which there is a history of safe use. Although this simple concept has been stated in international and regional guidance for assessing the risk of newly expressed proteins in GM crops, its full implementation by regulatory authorities has been lacking. As a result, safety studies are often repeated at a significant expenditure of resources by developers, study results are repeatedly reviewed by regulators, and animals are sacrificed needlessly to complete redundant animal toxicity studies. This situation is illustrated using the example of the selectable marker phosphomannose isomerase (PMI) for which familiarity has been established. Reviewed is the history of safe use for PMI and predictable results of newly conducted safety studies including bioinformatic comparisons, resistance to digestion, and acute toxicity that were repeated to gain regulatory reapproval of PMI expressed from constructs in recently developed GM maize. As expected, the results of these newly repeated hazard-identification and characterization studies for PMI indicate negligible risk. PMI expressed in recently developed GM crops provides an opportunity to use the concept of familiarity by regulatory authorities to reduce risk-disproportionate regulation of these new events and lessen the resulting waste of both developer and regulator resources, as well as eliminate unnecessary animal testing. This would also correctly imply that familiar proteins like PMI have negligible risk. Together, such modernization of regulations would benefit society through enabling broader and faster access to needed technologies.


Assuntos
Produtos Agrícolas , Manose-6-Fosfato Isomerase , Animais , Manose-6-Fosfato Isomerase/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
10.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778253

RESUMO

Fertilization of eggs from the African clawed frog Xenopus laevis is characterized by an increase in cytosolic calcium, a phenomenon that is also observed in other vertebrates such as mammals and birds. During fertilization in mammals and birds, the transfer of the soluble PLCζ from sperm into the egg is thought to trigger the release of calcium from the endoplasmic reticulum (ER). Injecting sperm extracts into eggs reproduces this effect, reinforcing the hypothesis that a sperm factor is responsible for calcium release and egg activation. Remarkably, this occurs even when sperm extracts from X. laevis are injected into mouse eggs, suggesting that mammals and X. laevis share a sperm factor. However, X. laevis lacks an annotated PLCZ1 gene, which encodes the PLCζ enzyme. In this study, we attempted to determine whether sperm from X. laevis express an unannotated PLCZ1 ortholog. We identified PLCZ1 orthologs in 11 amphibian species, including 5 that had not been previously characterized, but did not find any in either X. laevis or the closely related Xenopus tropicalis. Additionally, we performed RNA sequencing on testes obtained from adult X. laevis males and did not identify potential PLCZ1 orthologs in our dataset or in previously collected ones. These findings suggest that PLCZ1 may have been lost in the Xenopus lineage and raise the question of how fertilization triggers calcium release and egg activation in these species.

11.
J Biol Chem ; 298(8): 102264, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843309

RESUMO

TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.


Assuntos
Fosfatos , Fosfatidilinositol 4,5-Difosfato , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Xenopus laevis/metabolismo
12.
Food Chem Toxicol ; 166: 113187, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688270

RESUMO

As agricultural biotechnology continues to develop solutions for addressing crop pests through newly expressed proteins from novel source organisms, with different modes or sites of action and/or different spectra of activity, the safety of these proteins will be assessed. The results of hazard-identification and characterization studies for the insecticidal protein IPD079Ea, which is derived from a fern (Ophioglossum pendulum) and active against the maize pest western corn rootworm (Diabrotica virgifera virgifera, Coleoptera: Chrysomelidae) are provided. Collectively these results indicate that IPD079Ea is unlikely to present a hazard to human or animal health and support the safety of genetically modified maize expressing IPD079Ea.


Assuntos
Bacillus thuringiensis , Besouros , Gleiquênias , Inseticidas , Animais , Endotoxinas/metabolismo , Humanos , Resistência a Inseticidas , Inseticidas/metabolismo , Inseticidas/toxicidade , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética
14.
GM Crops Food ; 12(1): 396-408, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34459369

RESUMO

Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.


Assuntos
Galinhas , Zea mays , Ração Animal/análise , Animais , Grão Comestível , Plantas Geneticamente Modificadas , Ratos , Zea mays/genética
15.
MicroPubl Biol ; 20212021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33598639

RESUMO

Fertilization of an egg by multiple sperm presents one of the earliest and most prevalent obstacles to successful reproduction. Eggs employ multiple mechanisms to prevent sperm entry into the nascent zygote. The fast block to polyspermy uses a depolarization to inhibit sperm entry. For some external fertilizers, fertilization and the fast block require actin polymerization. Here we explored whether the fast block to polyspermy in the external fertilizer, Xenopus laevis, requires actin polymerization. Inseminating in the presence of inhibitor cytochalasin B, here we demonstrate that actin polymerization is not required for the fast block to polyspermy in X. laevis.

16.
GM Crops Food ; 12(1): 282-291, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472515

RESUMO

Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced zmm28 gene relative to endogenous zmm28 gene expression, resulting in plants with enhanced grain yield potential. The zmm28 gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.


Assuntos
Galinhas , Zea mays , Alérgenos , Ração Animal , Animais , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas , Ratos , Zea mays/genética
17.
Nucleic Acids Res ; 49(1): e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33221877

RESUMO

RNA sequencing (RNA-seq) is extensively used to quantify gene expression transcriptome-wide. Although often paired with polyadenylate (poly(A)) selection to enrich for messenger RNA (mRNA), many applications require alternate approaches to counteract the high proportion of ribosomal RNA (rRNA) in total RNA. Recently, digestion using RNaseH and antisense DNA oligomers tiling target rRNAs has emerged as an alternative to commercial rRNA depletion kits. Here, we present a streamlined, more economical RNaseH-mediated rRNA depletion with substantially lower up-front costs, using shorter antisense oligos only sparsely tiled along the target RNA in a 5-min digestion reaction. We introduce a novel Web tool, Oligo-ASST, that simplifies oligo design to target regions with optimal thermodynamic properties, and additionally can generate compact, common oligo pools that simultaneously target divergent RNAs, e.g. across different species. We demonstrate the efficacy of these strategies by generating rRNA-depletion oligos for Xenopus laevis and for zebrafish, which expresses two distinct versions of rRNAs during embryogenesis. The resulting RNA-seq libraries reduce rRNA to <5% of aligned reads, on par with poly(A) selection, and also reveal expression of many non-adenylated RNA species. Oligo-ASST is freely available at https://mtleelab.pitt.edu/oligo to design antisense oligos for any taxon or to target any abundant RNA for depletion.


Assuntos
Biologia Computacional/métodos , Oligodesoxirribonucleotídeos Antissenso/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA/genética , Animais , Sequência de Bases , Feminino , Perfilação da Expressão Gênica/métodos , Internet , Masculino , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Poli A/genética , Poli A/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease H/metabolismo , Análise de Sequência de RNA/métodos , Xenopus laevis/embriologia , Xenopus laevis/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
18.
Elife ; 92020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263540

RESUMO

Imaging sperm as they travel through the female reproductive tract has revealed new details about fertilization at the molecular level.


Assuntos
Canais de Cálcio , Capacitação Espermática , Animais , Feminino , Fertilização , Masculino , Camundongos , Espermatozoides
19.
Regul Toxicol Pharmacol ; 117: 104779, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32888975

RESUMO

Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days. As anticipated, no biologically-relevant effects or toxicologically-significant differences were observed on survival, body weight/gain, food consumption/efficiency, clinical and neurobehavioral evaluations, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, urinalysis), organ weights, or gross and microscopic pathology parameters in rats fed a diet containing up to 50% DP202216 maize grain when compared with rats fed diets containing control or reference maize grains. The results of this study support the conclusion that maize grain from plants containing event DP-2Ø2216-6 is as safe and nutritious as maize grain not containing the event and add to the significant existing database of rodent subchronic studies demonstrating the absence of hazards from consumption of edible fractions of genetically modified plants.


Assuntos
Aminobutiratos/administração & dosagem , Ração Animal , Ingestão de Alimentos/efeitos dos fármacos , Herbicidas/administração & dosagem , Plantas Geneticamente Modificadas , Zea mays , Aminobutiratos/toxicidade , Ração Animal/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Herbicidas/toxicidade , Masculino , Plantas Geneticamente Modificadas/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Zea mays/toxicidade
20.
PLoS Biol ; 18(7): e3000811, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735558

RESUMO

One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.


Assuntos
Fertilização , Oócitos/metabolismo , Zinco/metabolismo , Ambystoma mexicanum , Animais , Feminino , Hidrozoários , Masculino , Strongylocentrotus purpuratus , Xenopus laevis , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...