Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537499

RESUMO

Shipping is one of the largest industries globally, with well-known negative impacts on the marine environment. Despite the known negative short-term (minutes to hours) impact of shipping on individual animal behavioural responses, very little is understood about the long-term (months to years) impact on marine species presence and area use. This study took advantage of a planned rerouting of a major shipping lane leading into the Baltic Sea, to investigate the impact on the presence and foraging behaviour of a marine species known to be sensitive to underwater noise, the harbour porpoise (Phocoena phocoena). Passive acoustic monitoring data were collected from 15 stations over two years. Against predictions, no clear change occurred in monthly presence or foraging behaviour of the porpoises, despite the observed changes in noise and vessel traffic. However, long-term heightened noise levels may still impact communication, echolocation, or stress levels of individuals, and needs further investigation.


Assuntos
Ecossistema , Phocoena , Navios , Animais , Monitoramento Ambiental , Ruído , Ruído dos Transportes
2.
Ecol Evol ; 12(2): e8554, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222950

RESUMO

Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.

3.
PLoS One ; 11(7): e0158788, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27463509

RESUMO

Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area.


Assuntos
Acústica , Monitoramento Ambiental/métodos , Phocoena , Telemetria/métodos , Animais , Demografia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...