Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38961621

RESUMO

The adhesin FimH is expressed by commensal Escherichia coli and is implicated in urinary tract infections, where it mediates adhesion to mannosylated glycoproteins on urinary and intestinal epithelial cells in the presence of a high-shear fluid environment. The FimH-mannose bond exhibits catch behavior in which bond lifetime increases with force, because tensile force induces a transition in FimH from a compact native to an elongated activated conformation with a higher affinity to mannose. However, the lifetime of the activated state of FimH has not been measured under force. Here we apply multiplexed magnetic tweezers to apply a preload force to activate FimH bonds with yeast mannan, then we measure the lifetime of these activated bonds under a wide range of forces above and below the preload force. A higher fraction of FimH-mannan bonds were activated above than below a critical preload force, confirming the FimH catch bond behavior. Once activated, FimH detached from mannose with multi-state kinetics, suggesting the existence of two bound states with a 20-fold difference in dissociation rates. The average lifetime of activated FimH-mannose bonds was 1000 to 10,000 s at forces of 30-70 pN. Structural explanations of the two bound states and the high force resistance provide insights into structural mechanisms for long-lived, force-resistant biomolecular interactions.

2.
J Mol Biol ; 434(17): 167681, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35697293

RESUMO

The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an 'inactive' conformation with fast binding to mannose to an 'active' conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.


Assuntos
Adesinas de Escherichia coli , Aderência Bacteriana , Escherichia coli , Proteínas de Fímbrias , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/fisiologia , Regulação Alostérica , Aderência Bacteriana/fisiologia , Escherichia coli/fisiologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Manose/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resistência ao Cisalhamento
3.
PLoS Pathog ; 17(4): e1009440, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826682

RESUMO

Critical molecular events that control conformational transitions in most allosteric proteins are ill-defined. The mannose-specific FimH protein of Escherichia coli is a prototypic bacterial adhesin that switches from an 'inactive' low-affinity state (LAS) to an 'active' high-affinity state (HAS) conformation allosterically upon mannose binding and mediates shear-dependent catch bond adhesion. Here we identify a novel type of antibody that acts as a kinetic trap and prevents the transition between conformations in both directions. Disruption of the allosteric transitions significantly slows FimH's ability to associate with mannose and blocks bacterial adhesion under dynamic conditions. FimH residues critical for antibody binding form a compact epitope that is located away from the mannose-binding pocket and is structurally conserved in both states. A larger antibody-FimH contact area is identified by NMR and contains residues Leu-34 and Val-35 that move between core-buried and surface-exposed orientations in opposing directions during the transition. Replacement of Leu-34 with a charged glutamic acid stabilizes FimH in the LAS conformation and replacement of Val-35 with glutamic acid traps FimH in the HAS conformation. The antibody is unable to trap the conformations if Leu-34 and Val-35 are replaced with a less bulky alanine. We propose that these residues act as molecular toggle switches and that the bound antibody imposes a steric block to their reorientation in either direction, thereby restricting concerted repacking of side chains that must occur to enable the conformational transition. Residues homologous to the FimH toggle switches are highly conserved across a diverse family of fimbrial adhesins. Replacement of predicted switch residues reveals that another E. coli adhesin, galactose-specific FmlH, is allosteric and can shift from an inactive to an active state. Our study shows that allosteric transitions in bacterial adhesins depend on toggle switch residues and that an antibody that blocks the switch effectively disables adhesive protein function.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica
4.
J Biol Eng ; 15(1): 3, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436006

RESUMO

BACKGROUND: Recognition proteins are critical in many biotechnology applications and would be even more useful if their binding could be regulated. The current gold standard for recognition molecules, antibodies, lacks convenient regulation. Alternative scaffolds can be used to build recognition proteins with new functionalities, including regulated recognition molecules. Here we test the use of the bacterial adhesin FimH as a scaffold for regulated molecular recognition. FimH binds to its native small molecule target mannose in a conformation-dependent manner that can be regulated by two types of noncompetitive regulation: allosteric and parasteric. RESULTS: We demonstrate that conformational regulation of FimH can be maintained even after reengineering the binding site to recognize the non-mannosylated targets nickel or Penta-His antibody, resulting in an up to 7-fold difference in KD between the two conformations. Moreover, both the allosteric and parasteric regulatory mechanisms native to FimH can be used to regulate binding to its new target. In one mutant, addition of the native ligand mannose parasterically improves the mutant's affinity for Penta-His 4-fold, even as their epitopes overlap. In another mutant, the allosteric antibody mab21 reduces the mutant's affinity for Penta-His 7-fold. The advantage of noncompetitive regulation is further illustrated by the ability of this allosteric regulator to induce 98% detachment of Penta-His, even with modest differences in affinity. CONCLUSIONS: This illustrates the potential of FimH, with its deeply studied conformation-dependent binding, as a scaffold for conformationally regulated binding via multiple mechanisms.

5.
Biophys Rep (N Y) ; 1(2)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35965968

RESUMO

Three-dimensional particle tracking is a routine experimental procedure for various biophysical applications including magnetic tweezers. A common method for tracking the axial position of particles involves the analysis of diffraction rings whose pattern depends sensitively on the axial position of the bead relative to the focal plane. To infer the axial position, the observed rings are compared with reference images of a bead at known axial positions. Often the precision or accuracy of these algorithms is measured on immobilized beads over a limited axial range, while many experiments are performed using freely mobile beads. This inconsistency raises the possibility of incorrect estimates of experimental uncertainty. By manipulating magnetic beads in a bidirectional magnetic tweezer setup, we evaluated the error associated with tracking mobile magnetic beads and found that the error of tracking a moving magnetic bead increases by almost an order of magnitude compared to the error of tracking a stationary bead. We found that this additional error can be ameliorated by excluding the center-most region of the diffraction ring pattern from tracking analysis. Evaluation of the limitations of a tracking algorithm is essential for understanding the error associated with a measurement. These findings promise to bring increased resolution to three-dimensional bead tracking of magnetic microspheres.

6.
J Am Soc Mass Spectrom ; 27(9): 1575-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349253

RESUMO

Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 µm spatial resolution. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...