Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Pharmacol ; 19(7): 673-82, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18797244

RESUMO

Many orally administered pharmaceuticals are regarded by humans as aversive, most often described as 'bitter'. Taste aversiveness often leads to patient noncompliance and reduced treatment effectiveness. 'Bitter' taste is mediated by T2R G-protein coupled receptors through a peripheral signaling pathway critically dependent upon function of the TRPM5 ion channel. The brief-access taste aversion (BATA) assay operationally defines aversive taste as suppression of the rate at which a rodent licks from sipper tubes that deliver tastant solutions or suspensions. We have used a mouse BATA assay for rapid quantification of oral aversiveness from a set of 20 active pharmaceutical ingredients (APIs). Robust lick-rate dose-response functions were obtained from both C57BL/6J wild type (WT) and C57BL/6J/TRPM5-/- (TRPM5 knockout) mouse strains, generating reliable determinations of potency and relative maximal oral aversiveness for each API. A subset of APIs was also evaluated in a human bitterness assessment test; effective concentrations for half-maximum responses (EC50s) from both the human test and WT mouse BATA were equivalent. Relative to WT potencies, EC50s from TRPM5 knockout mice were right-shifted more than 10-fold for most APIs. However, APIs were identified for which EC50s were essentially identical in both mouse strains, indicating a TRPM5-independent alternative aversive pathway. Our results suggest the BATA assay will facilitate formulation strategies and taste assessment of late development-phase APIs.


Assuntos
Aprendizagem da Esquiva/fisiologia , Medicamentos sem Prescrição , Medicamentos sob Prescrição , Canais de Cátion TRPM/genética , Paladar/genética , Animais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Limiar Gustativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...