Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 10(5): 998-1018, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22822352

RESUMO

High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal). Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC(50) values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers.


Assuntos
Carotenoides/administração & dosagem , Copépodes/efeitos dos fármacos , Copépodes/metabolismo , Cobre/toxicidade , Raios Ultravioleta/efeitos adversos , Animais , Organismos Aquáticos/metabolismo , Carotenoides/metabolismo , Crustáceos/metabolismo , Dieta , Radicais Livres/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/metabolismo
2.
Mar Pollut Bull ; 60(12): 2201-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20875652

RESUMO

Increased atmospheric CO(2) concentrations are causing greater dissolution of CO(2) into seawater, and are ultimately responsible for today's ongoing ocean acidification. We manipulated seawater acidity by addition of HCl and by increasing CO(2) concentration and observed that two coastal harpacticoid copepods, Amphiascoides atopus and Schizopera knabeni were both more sensitive to increased acidity when generated by CO(2). The present study indicates that copepods living in environments more prone to hypercapnia, such as mudflats where S. knabeni lives, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO(2) enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO(2) with Cd, Cu and Cu free-ion in A. atopus. This interaction could be due to a competition for H(+) and metals for binding sites.


Assuntos
Dióxido de Carbono/toxicidade , Copépodes/efeitos dos fármacos , Metais/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Dióxido de Carbono/química , Interações Medicamentosas , Concentração de Íons de Hidrogênio , Metais/química , Poluentes Químicos da Água/química
3.
Environ Toxicol Chem ; 28(11): 2289-97, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19580335

RESUMO

Estuarine sediment microcosms were treated with combinations of diesel, copper (at two levels), and a mixture of heavy metals (mercury, cadmium, lead, and chromium; at two levels) mimicking the contaminant loadings found in harbor sediments. The effects on the microbial community were monitored by polar lipid fatty acid analysis. Diesel addition increased microbial biomass, caused shifts in some fatty acid structural groups, and decreased starvation biomarkers. Incorporation of diesel hydrocarbons into lipids was expressed as an increase in the proportion of odd-carbon-number fatty acids. No treatment with the metals mixture (mercury, cadmium, lead, and chromium) alone significantly changed any parameter derived from the polar lipid fatty acids, but the increase in microbial biomass from diesel addition was higher with the metals mixture, possibly because of indirect effects caused by reductions in grazing resulting from metal-induced toxicity to bacteriovorous nematodes. Copper also modified the effects of diesel addition, preventing biomass increase but not diesel degradation, suggesting that some of the energy gained from diesel oxidation was expended combating copper toxicity. In the present study, observations indicate that metals in general, and copper in particular, can modify the response of sedimentary microorganisms to petroleum-hydrocarbon contaminants.


Assuntos
Biomassa , Cobre/metabolismo , Gasolina , Sedimentos Geológicos , Microbiologia do Solo , Cádmio/metabolismo , Cádmio/toxicidade , Cromo/metabolismo , Cromo/toxicidade , Cobre/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Hidrocarbonetos/toxicidade , Chumbo/metabolismo , Chumbo/toxicidade , Mercúrio/metabolismo , Mercúrio/toxicidade
4.
Arch Environ Contam Toxicol ; 56(3): 434-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18704255

RESUMO

The effects of sediments contaminated with sublethal concentrations of phenanthrene (PAH) and metals (Cd, Hg, Pb) were evaluated in relation to their influence on the feeding activity of a harpacticoid copepod, Schizopera knabeni. A metal mixture (at the ratio of 5Pb:3Cd:2Hg) and Cd alone reduced grazing rates of S. knabeni feeding on (14)C-labeled microalgae. Cadmium alone and Cd combined with phenanthrene significantly decreased grazing rates of S. knabeni at Cd concentrations above 49 mg kg(-1) dry sediment. No grazing was observed in 98, 106, or 157 mg kg(-1) dry sediment Cd alone or in sediment contaminated with phenanthrene (98 mg kg(-1) dry sediment) combined with Cd at these concentrations. Phenanthrene alone also caused a significant decrease (55%) in S. knabeni grazing rates. Feeding ceased above 344 mg kg(-1) dry sediment of the metal mixture alone and combined with phenanthrene. Results were consistent with an independent effect on feeding when Cd and phenanthrene were combined. When other metals were added (Pb and Hg) to the mixture, results were consistent with an additive influence on feeding rate. Because the underlying mechanisms of toxicity for metals and PAH are probably different, our observations suggest that reductions in grazing probably did not directly contribute to the lethal effects of phenanthrene or metals. The absence of interactive effects on feeding suggests that metal-PAH interactive effects on lethality have a different underlying mechanism and that reductions in grazing probably did not directly contribute to the lethality effects of phenanthrene or metals in S. knabeni.


Assuntos
Cádmio/toxicidade , Copépodes/efeitos dos fármacos , Sedimentos Geológicos/análise , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Copépodes/fisiologia , Comportamento Alimentar/efeitos dos fármacos
5.
Folia Parasitol (Praha) ; 52(1-2): 111-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16004370

RESUMO

Microsporidia constitute a large group of obligate intracellular protozoan parasites that inject themselves into host cells via the extrusion apparatus of the infective spore stage. Although the injection process is poorly understood, its energy source is thought to reside in the posterior vacuole that swells significantly during spore firing. Here we report the presence and localisation of the key peroxisomal enzymes catalase and acyl-CoA oxidase (ACOX) within the posterior vacuole of Spraguea lophii (Doflein, 1898) spores. Western blot analyses show that these enzymes discharge out of the spore and end up in the medium external to the extruded sporoplasms. The presence of a catalase enzyme system in the Microsporidia was first made evident by the detection of significant levels of molecular oxygen in the medium containing discharging spores in the presence of hydrogen peroxide. Catalase was visualised in inactive, activated, and discharged spores using alkaline diaminobenzidine (DAB) on glutaraldehyde-fixed cells. The position of these enzymes within the extrusion apparatus before and during spore discharge support the Lom and Vávra model that postulates discharge occurs by an eversion process. In addition to these enzymes, spores of S. lophii contain another characteristic peroxisomal component, the very long chain fatty acid (VLCFA) nervonic acid. A sizeable decrease in nervonic acid levels occurs during and after spore discharge. These data indicate that nervonic acid is discharged from the spore into the external medium during firing along with the catalase and ACOX enzymes.


Assuntos
Acil-CoA Oxidase/metabolismo , Apansporoblastina/enzimologia , Catalase/metabolismo , Peixes/microbiologia , Esporos Fúngicos/enzimologia , Vacúolos/enzimologia , Animais , Western Blotting , Ácidos Graxos Monoinsaturados/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Oxigênio/metabolismo , Esporos Fúngicos/ultraestrutura
6.
Sci Total Environ ; 317(1-3): 207-33, 2003 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-14630423

RESUMO

Contaminants such as petroleum hydrocarbons, heavy metals and pesticides can cause direct toxic effects when released into aquatic environments. Sensitive species may be impaired by sublethal effects or decimated by lethality, and this ecological alteration may initiate a trophic cascade or a release from competition that secondarily leads to responses in tolerant species. Contaminants may exert direct effects on keystone facilitator and foundation species, and contaminant-induced changes in nutrient and oxygen dynamics may alter ecosystem function. Thus, populations and communities in nature may be directly and/or indirectly affected by exposure to pollutants. While the direct effects of toxicants usually reduce organism abundance, indirect effects may lead to increased or decreased abundance. Here we review 150 papers that reference indirect toxicant effects in aquatic environments. Studies of accidental contaminant release, chronic contamination and experimental manipulations have identified indirect contaminant effects in pelagic and benthic communities caused by many types of pollutants. Contaminant-induced changes in behavior, competition and predation/grazing rate can alter species abundances or community composition, and enhance, mask or spuriously indicate direct contaminant effects. Trophic cascades were found in 60% of the manipulative studies and, most commonly, primary producers increased in abundance when grazers were selectively eliminated by contaminants. Competitive release may also be common, but is difficult to distinguish from trophic cascades because few experiments are designed to isolate the mechanism(s) causing indirect effects. Indirect contaminant effects may have profound implications in environments with strong trophic cascades such as the freshwater pelagic. In spite of their undesirable environmental influence, contaminants can be useful manipulative tools for the study of trophic and competitive interactions in natural communities.


Assuntos
Ecossistema , Cadeia Alimentar , Intoxicação por Metais Pesados , Hidrocarbonetos/intoxicação , Praguicidas/intoxicação , Poluentes da Água/intoxicação , Animais , Biomassa , Peixes , Invertebrados , Petróleo , Dinâmica Populacional , Abastecimento de Água
7.
Oecologia ; 99(1-2): 158-165, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313962

RESUMO

We used laboratory experiments to assess the degree of, and the underlying mechanism for, density dependence in the grazing rate of the pulmonate gastropod Physella virgata. Both fecal pellet production and uptake and incorporation of 14C radioisotopes from labeled periphyton were used as indices of grazing rates. Pronounced density-dependent reductions in grazing rate were observed, especially at densities above 4 snails/-25 cm2 periphyton grazing area. Radioisotope experiments also indicated that proportions of ingested 14C periphyton retained in snail tissue and respired as carbon dioxide increased at higher densities, suggesting that both assimilation efficiency and respiratory costs increase at higher densities. Constant replacement of water in aquaria did not remove density-dependent effects on grazing, suggesting that a dissolved metabolite is not responsible. Experiments where tiles were "pre-conditioned" with snails grazing at several densities actually stimulated grazing in subsequently added snails, suggesting that substrate-borne cues are also not responsible for density-dependent reductions in grazing rate. Behavioral inferference (in the form of shell-shaking after contacts with other snails) did, however, increase at higher densities, and may be partially reponsible for depressed grazing rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...