Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(23): 9896-9902, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812637

RESUMO

Nanobubbles formed in monolayers of transition metal dichalcogenides (TMDCs) on top of a substrate feature localized potentials in which electrons can be captured. We show that the captured electronic density can exhibit a nontrivial spatiotemporal dynamics, whose movements can be mapped to states in a two-level system illustrated as points of an electronic Poincaré sphere. These states can be fully controlled, i.e, initialized and switched, by multiple electronic wave packets. Our results could be the foundation for novel implementations of quantum circuits.

2.
Nat Nanotechnol ; 15(10): 854-860, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661371

RESUMO

In monolayer transition-metal dichalcogenides, localized strain can be used to design nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale interplay between excitons and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopic analysis of excitons in nanobubbles of monolayer WSe2 with atomistic models to study how strain induces nanoscale confinement potentials and localized exciton states. The imaging of nanobubbles in monolayers with low defect concentrations reveals localized excitons on length scales of around 10 nm at multiple sites around the periphery of individual nanobubbles, in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials atomistically derived from the measured topographies of nanobubbles. Our results provide experimental and theoretical insights into strain-induced exciton localization on length scales commensurate with exciton size, realizing key nanoscale structure-property information on quantum emitters in monolayer WSe2.

3.
Nano Lett ; 19(5): 3182-3186, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30945871

RESUMO

The observation of quantum light emission from atomically thin transition metal dichalcogenides has opened a new field of applications for these material systems. The corresponding excited charge-carrier localization has been linked to defects and strain, while open questions remain regarding the microscopic origin. We demonstrate that the bending rigidity of these materials leads to wrinkling of the two-dimensional layer. The resulting strain field facilitates strong carrier localization due to its pronounced influence on the band gap. Additionally, we consider charge carrier confinement due to local changes of the dielectric environment and show that both effects contribute to modified electronic states and optical properties. The interplay of surface wrinkling, strain-induced confinement, and local changes of the dielectric environment is demonstrated for the example of nanobubbles that form when monolayers are deposited on substrates or other two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA