Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646934

RESUMO

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.


Assuntos
Leucemia Mieloide Aguda , Pirimidinas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Humanos , Pirimidinas/uso terapêutico , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Imunoterapia/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
Eur J Med Chem ; 254: 115342, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071962

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a promising therapeutic target in multiple cancer types, including acute myeloid leukemia (AML). Protein degraders, also known as proteolysis targeting chimeras (PROTACs), have emerged as tools for the selective degradation of cancer targets, including CDK9, complementing the activity of traditional small-molecule inhibitors. These compounds typically incorporate previously reported inhibitors and a known E3 ligase ligand to induce ubiquitination and subsequent degradation of the target protein. Although many protein degraders have been reported in the literature, the properties of the linker necessary for efficient degradation still require special attention. In this study, a series of protein degraders was developed, employing the clinically tested CDK inhibitor AT7519. The purpose of this study was to examine the effect that linker composition, specifically chain length, would have on potency. In addition to establishing a baseline of activity for various linker compositions, two distinct homologous series, a fully alkyl series and an amide-containing series, were prepared, demonstrating the dependence of degrader potency in these series on linker length and the correlation with predicted physicochemical properties.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Proteólise , Quinase 9 Dependente de Ciclina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico
3.
JCI Insight ; 5(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268594

RESUMO

Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment-mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Duplicação Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Sulfonamidas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Hematol Oncol ; 13(1): 8, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992353

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of adult leukemia. Several studies have demonstrated that oncogenesis in AML is enhanced by kinase signaling pathways such as Src family kinases (SFK) including Src and Lyn, spleen tyrosine kinase (SYK), and bruton's tyrosine kinase (BTK). Recently, the multi-kinase inhibitor ArQule 531 (ARQ 531) has demonstrated potent inhibition of SFK and BTK that translated to improved pre-clinical in vivo activity as compared with the irreversible BTK inhibitor ibrutinib in chronic lymphocytic leukemia (CLL) models. Given the superior activity of ARQ 531 in CLL, and recognition that this molecule has a broad kinase inhibition profile, we pursued its application in pre-clinical models of AML. METHODS: The potency of ARQ 531 was examined in vitro using FLT3 wild type and mutated (ITD) AML cell lines and primary samples. The modulation of pro-survival kinases following ARQ 531 treatment was determined using AML cell lines. The effect of SYK expression on ARQ 531 potency was evaluated using a SYK overexpressing cell line (Ba/F3 murine cells) constitutively expressing FLT3-ITD. Finally, the in vivo activity of ARQ 531 was evaluated using MOLM-13 disseminated xenograft model. RESULTS: Our data demonstrate that ARQ 531 treatment has anti-proliferative activity in vitro and impairs colony formation in AML cell lines and primary AML cells independent of the presence of a FLT3 ITD mutation. We demonstrate decreased phosphorylation of oncogenic kinases targeted by ARQ 531, including SFK (Tyr416), BTK, and fms-related tyrosine kinase 3 (FLT3), ultimately leading to changes in down-stream targets including SYK, STAT5a, and ERK1/2. Based upon in vitro drug synergy data, we examined ARQ 531 in the MOLM-13 AML xenograft model alone and in combination with venetoclax. Despite ARQ 531 having a less favorable pharmacokinetics profile in rodents, we demonstrate modest single agent in vivo activity and synergy with venetoclax. CONCLUSIONS: Our data support consideration of the application of ARQ 531 in combination trials for AML targeting higher drug concentrations in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...