Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(72): 16591-16605, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31626355

RESUMO

A symbiotic experimental/computational study analyzed the Ru(TPP)(NAr)2 -catalyzed one-pot formation of indoles from alkynes and aryl azides. Thirty different C3 -substituted indoles were synthesized and the best performance, in term of yields and regioselectivities, was observed when reacting ArC≡CH alkynes with 3,5-(EWG)2 C6 H3 N3 azides, whereas the reaction was less efficient when using electron-rich aryl azides. A DFT analysis describes the reaction mechanism in terms of the energy costs and orbital/electronic evolutions; the limited reactivity of electron-rich azides was also justified. In summary, PhC≡CH alkyne interacts with one NAr imido ligand of Ru(TPP)(NAr)2 to give a residually dangling C(Ph) group, which, by coupling with a C(H) unit of the N-aryl substituent, forms a 5+6 bicyclic molecule. In the process, two subsequent spin changes allow inverting the conformation of the sp2 C(Ph) atom and its consequent electrophilic-like attack to the aromatic ring. The bicycle isomerizes to indole via a two-step outer sphere H-migration. Eventually, a 'Ru(TPP)(NAr)' mono-imido active catalyst is reformed after each azide/alkyne reaction.

2.
Chemistry ; 22(38): 13599-612, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555480

RESUMO

The catalytic activity of the iron(III) C2 chiral porphyrin Fe(2)(OMe) in alkene cyclopropanation is herein reported. The catalyst promoted the reaction of differently substituted styrenes with diazo derivatives with trans-diastereoselectivities and enantioselectivities up to 99:1 and 87 %, respectively. In addition, high TON and TOF values (up to 10 000 and 120 000 h(-1) , respectively) were observed indicating good activity and stability of the catalyst in optimized experimental conditions. The study of the cyclopropanation reaction revealed that the porphyrin skeleton is composed of two 'totem' parts which were independently responsible for the observed enantio- and diastereoselectivities. To further our research we also investigated the catalytic role of the methoxy axial ligand coordinated to the iron atom. The molecular structure of Fe(2)(OMe) was optimized by DFT calculations which were also employed to achieve a better understanding of the mechanistic details of the carbene transfer reaction.

3.
Dalton Trans ; 45(40): 15746-15761, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27356158

RESUMO

The use of diazo reagents of the general formula N2C(R)(R1) as carbene sources to create new C-C bonds is of broad scientific interest due to the intrinsic sustainability of this class of reagents. In the presence of a suitable catalyst, diazo reagents react with several organic substrates with excellent stereo-control and form N2 as the only by-product. In the present report the catalytic efficiency of metal porphyrins in promoting carbene transfer reactions is reviewed with emphasis on the active role of the porphyrin skeleton in stereoselectively driving the carbene moiety to the target substrate. The catalytic performances of different metal porphyrins are discussed and have been related to the structural features of the ligand with the final aim of rationalizing the strict correlation between the three-dimensional structure of the porphyrin ligand and the stereoselectivity of carbene transfer reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...