Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 12(9): 211, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35945986

RESUMO

Gossypium hirsutum L. represents the best cotton species for fiber production, thus computing the largest cultivated area worldwide. Meloidogyne incognita is a root-knot nematode (RKN) and one of the most important species of Meloidogyne genus, which has a wide host range, including cotton plants. Phytonematode infestations can only be partially controlled by conventional agricultural methods, therefore, more effective strategies to improve cotton resistance to M. incognita disease are highly desirable. The present study employed functional genomics to validate the involvement of two previously identified candidate genes, encoding dirigent protein 4-GhDIR4 and peroxiredoxin-2-GhPRXIIB, in cotton defense against M. incognita. Transgenic A. thaliana plant lines overexpressing GhDIR4 and GhPRXIIB genes were generated and displayed significantly improved resistance against M. incognita infection in terms of female nematode abundance in the roots when compared to wild-type control plants. For our best target-gene GhDIR4, an in-silico functional analysis, including multiple sequence alignment, phylogenetic relationship, and search for specific protein motifs unveiled potential orthologs in other relevant crop plants, including monocots and dicots. Our findings provide valuable information for further understanding the roles of GhDIR and GhPRXIIB genes in cotton defense response against RKN nematode. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03282-4.

2.
J Proteomics ; 192: 299-310, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30267876

RESUMO

Peanut wild relatives (Arachis spp.) have high genetic diversity and are important sources of resistance to biotic and abiotic stresses. In this study, proteins were analyzed in root tissues of A. duranensis submitted to a progressive water deficit in soil and the differential abundance was compared to transcript expression profiles obtained by RNA-seq and qRT-PCR. Using a 2-DE approach, a total of 31 proteins were identified, most of which were associated with stress response and drought perception. These comprised a chitinase-2 (unique to stressed condition), an MLP-like protein, a glycine-rich protein DOT1-like, a maturase K and heat shock-related proteins (HSP70 - an isoform unique to the control, and HSP17.3). Other proteins unique to the control condition comprised a transcription initiation factor IIF subunit alpha-like protein, a SRPBCC ligand-binding domain superfamily protein, an Adenine phosphoribosyl transferase, a Leo1-like protein, a Cobalamine-independent methionine synthase and a Transmembrane emp24 domain-containing protein p24delta9-like. Correlation of mRNA expression and corresponding protein abundance was observed for 15 of the identified proteins, with genes encoding the majority of proteins (14) negatively regulated in stressed roots. Proteins identified in this study offer potential for the genetic improvement of cultivated peanut for drought tolerance. SIGNIFICANCE: The comparison of protein abundance and corresponding transcript expression levels (RNA-seq and qRT-PCR) revealed that 15 of the identified proteins showed similar expression behavior, with the majority (14 proteins) negatively regulated in stressed roots. Chitinase-2 (Cht2) was the only protein with an upregulation behavior in all approaches. These proteins appear to play an important role in drought tolerance in A. duranensis and may be further explored in peanut genetic breeding programs.


Assuntos
Arachis/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Arachis/genética , Desidratação/genética , Desidratação/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteômica
3.
J Proteomics ; 151: 284-292, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27457268

RESUMO

Tomato chlorotic mottle virus (ToCMoV) is a widespread bipartite Begomovirus species found in tomato fields in Brazil. In this study, plant responses and putative mechanisms associated with the 'Tyking'-derived recessive resistance to ToCMoV were investigated. Changes in the protein profile in the inoculated plants of two near isogenic tomato lines resistant ('LAM 157') and susceptible ('Santa Clara') to ToCMoV were analyzed. Seedlings were biolistically inoculated with an infectious ToCMoV clone. Leaves from infected plants (confirmed by PCR) were sampled at 15days after inoculation. Proteins were extracted using phenol and analyzed by shotgun MS (2D-nanoUPLC/HDMSE). Out of the 534 identified proteins, 82 presented statistically significant differences in abundance, including 35 unique proteins displayed in the resistant tomato inoculated with ToCMoV. Proteins associated to chromatin structure, cytoskeleton structure, cuticle biosynthesis, and ubiquitin pathway were identified and their putative roles during virus infection process were discussed. The protein profile analysis allowed for the development of a hypothetical model showing how the resistant host cell responds to ToCMoV infection. The data obtained provide a better understanding of resistant mechanisms used by the host plant to contain viral infection and could be the basis for further investigation in other plant-begomovirus pathosystems. BIOLOGICAL SIGNIFICANCE: In this study we propose a model of resistance to begomovirus in tomato and highlight host proteins, which could be targets for future investigations in plant-begomovirus pathosystems.


Assuntos
Begomovirus/patogenicidade , Resistência à Doença , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Plantas/análise , Proteômica/métodos , Solanum lycopersicum/virologia , Brasil , Modelos Biológicos , Extratos Vegetais/química , Proteínas de Plantas/fisiologia
4.
J Proteomics ; 143: 278-285, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-26825537

RESUMO

UNLABELLED: Cruciferous plants are important edible vegetables widely consumed around the world, including cabbage, cauli-flower and broccoli. The main disease that affects crucifer plants is black rot, caused by Xanthomonas campestris pv. campestris (Xcc). In order to better understand this specific plant-pathogen interaction, proteins responsive to Xcc infection in resistant (União) and susceptible (Kenzan) Brassica oleracea cultivars were investigated by 2-DE followed by mass spectrometry. A total of 47 variable spots were identified and revealed that in the susceptible interaction there is a clear reduction in the abundance of proteins involved in energetic metabolism and defense. It was interesting to observe that in the resistant interaction, these proteins showed an opposite behavior. Based on our results, we conclude that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense. As a follow-up study, qRT-PCR analysis of selected genes was performed and revealed that most genes showed an up-regulation trend from 5 to 15days after inoculation (DAI), showing highest transcript levels at 15DAI. These results revealed the gradual accumulation of transcripts providing a more detailed view of the changes occurring during different stages of the plant-pathogen interaction. BIOLOGICAL SIGNIFICANCE: In this study we have compared cultivars of Brassica oleracea (cabbage), susceptible and resistant to black rot, by using the classical 2-DE approach. We have found that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense.


Assuntos
Brassica/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Xanthomonas campestris/fisiologia , Brassica/química , Brassica/imunologia , Brassica/metabolismo , Eletroforese em Gel Bidimensional , Metabolismo Energético , Espectrometria de Massas , Fotossíntese , Proteômica/métodos , Regulação para Cima , Xanthomonas campestris/patogenicidade
5.
Proteomics ; 15(10): 1746-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736976

RESUMO

Cowpea (Vigna unguiculata L. Walp) is an important legume species well adapted to low fertility soils and prolonged drought periods. One of the main problems that cause severe yield losses in cowpea is the root-knot nematode Meloidogyne incognita. The aim of this work was to analyze the differential expression of proteins in the contrasting cultivars of cowpea CE 31 (highly resistant) and CE 109 (slightly resistant) during early stages of M. incognita infection. Cowpea roots were collected at 3, 6, and 9 days after inoculation and used for protein extraction and 2-DE analysis. From a total of 59 differential spots, 37 proteins were identified, mostly involved in plant defense, such as spermidine synthase, patatin, proteasome component, and nitrile-specifier protein. A follow-up study was performed by quantitative RT-PCR analysis of nine selected proteins and the results revealed a very similar upregulation trend between the protein expression profiles and the corresponding transcripts. This study also identified ACT and GAPDH as a good combination of reference genes for quantitative RT-PCR analysis of the pathosystem cowpea/nematode. Additionally, an interactome analysis showed three major pathways affected by nematode infection: proteasome endopeptidase complex, oxidative phosphorylation, and flavonoid biosynthesis. Taken together, the results obtained by proteome, transcriptome, and interactome approaches suggest that oxidative stress, ubiquitination, and glucosinolate degradation may be part of cowpea CE 31 resistance mechanisms in response to nematode infection.


Assuntos
Fabaceae/parasitologia , Interações Hospedeiro-Parasita , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Proteômica/métodos , Tylenchoidea/fisiologia , Animais , Eletroforese em Gel Bidimensional , Fabaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Interações Hospedeiro-Parasita/genética , Espectrometria de Massas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...