Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 42(1): 114-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403620

RESUMO

The Kinematic Theory of rapid movements and its associated Sigma-Lognormal model have been extensively used in a large variety of applications. While the physical and biological meaning of the model have been widely tested and validated for rapid movements, some shortcomings have been detected when it is used with continuous long and complex movements. To alleviate such drawbacks, and inspired by the motor equivalence theory and a conceivable visual feedback, this paper proposes a novel framework to extract the Sigma-Lognormal parameters, namely iDeLog. Specifically, iDeLog consists of two steps. The first one, influenced by the motor equivalence model, separately derives an initial action plan defined by a set of virtual points and angles from the trajectory and a sequence of lognormals from the velocity. In the second step, based on a hypothetical visual feedback compatible with an open-loop motor control, the virtual target points of the action plan are iteratively moved to improve the matching between the observed and reconstructed trajectory and velocity. During experiments conducted with handwritten signatures, iDeLog obtained promising results as compared to the previous development of the Sigma-Lognormal.

2.
Front Physiol ; 10: 667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191358

RESUMO

Integration of technological solutions aims to improve accuracy, precision and repeatability in farming operations, and biosensor devices are increasingly used for understanding basic biology during livestock production. The aim of this study was to design and validate a miniaturized tri-axial accelerometer for non-invasive monitoring of farmed fish with re-programmable schedule protocols. The current device (AE-FishBIT v.1s) is a small (14 mm × 7 mm × 7 mm), stand-alone system with a total mass of 600 mg, which allows monitoring animals from 30 to 35 g onwards. The device was attached to the operculum of gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax) juveniles for monitoring their physical activity by measurements of movement accelerations in x- and y-axes, while records of operculum beats (z-axis) served as a measurement of respiratory frequency. Data post-processing of exercised fish in swimming test chambers revealed an exponential increase of fish accelerations with the increase of fish speed from 1 body-length to 4 body-lengths per second, while a close relationship between oxygen consumption (MO2) and opercular frequency was consistently found. Preliminary tests in free-swimming fish kept in rearing tanks also showed that device data recording was able to detect changes in daily fish activity. The usefulness of low computational load for data pre-processing with on-board algorithms was verified from low to submaximal exercise, increasing this procedure the autonomy of the system up to 6 h of data recording with different programmable schedules. Visual observations regarding tissue damage, feeding behavior and circulating levels of stress markers (cortisol, glucose, and lactate) did not reveal at short term a negative impact of device tagging. Reduced plasma levels of triglycerides revealed a transient inhibition of feed intake in small fish (sea bream 50-90 g, sea bass 100-200 g), but this disturbance was not detected in larger fish. All this considered together is the proof of concept that miniaturized devices are suitable for non-invasive and reliable metabolic phenotyping of farmed fish to improve their overall performance and welfare. Further work is underway for improving the attachment procedure and the full device packaging.

3.
IEEE Trans Cybern ; 48(10): 2896-2907, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28961136

RESUMO

Developing an automatic signature verification system is challenging and demands a large number of training samples. This is why synthetic handwriting generation is an emerging topic in document image analysis. Some handwriting synthesizers use the motor equivalence model, the well-established hypothesis from neuroscience, which analyses how a human being accomplishes movement. Specifically, a motor equivalence model divides human actions into two steps: 1) the effector independent step at cognitive level and 2) the effector dependent step at motor level. In fact, recent work reports the successful application to Western scripts of a handwriting synthesizer, based on this theory. This paper aims to adapt this scheme for the generation of synthetic signatures in two Indic scripts, Bengali (Bangla), and Devanagari (Hindi). For this purpose, we use two different online and offline databases for both Bengali and Devanagari signatures. This paper reports an effective synthesizer for static and dynamic signatures written in Devanagari or Bengali scripts. We obtain promising results with artificially generated signatures in terms of appearance and performance when we compare the results with those for real signatures.

4.
Hum Mov Sci ; 55: 18-30, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28750258

RESUMO

With the overall aim of improving the synthesis of handwritten signatures, we have studied how muscle activation depends on handwriting style for both text and flourish. Surface electromyographic (EMG) signals from a set of twelve arm and trunk muscles were recorded in synchronization with handwriting produced on a digital Tablet. Correlations between these EMG signals and handwritten trajectory signals were analyzed so as to define the sequence of muscles activated during the different parts of the signature. Our results establish a correlation between the speed of the movement, stroke size, handwriting style and muscle activation. Muscle activity appeared to be clustered as a function of movement speed and handwriting style, a finding which may be used for filter design in a signature synthesizer.


Assuntos
Escrita Manual , Músculo Esquelético/fisiologia , Adulto , Artrometria Articular , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Processos Mentais/fisiologia , Movimento/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
5.
IEEE Trans Pattern Anal Mach Intell ; 39(6): 1041-1053, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27333600

RESUMO

The synthetic generation of static handwritten signatures based on motor equivalence theory has been recently proposed for biometric applications. Motor equivalence divides the human handwriting action into an effector dependent cognitive level and an effector independent motor level. The first level has been suggested by others as an engram, generated through a spatial grid, and the second has been emulated with kinematic filters. Our paper proposes a development of this methodology in which we generate dynamic information and provide a unified comprehensive synthesizer for both static and dynamic signature synthesis. The dynamics are calculated by lognormal sampling of the 8-connected continuous signature trajectory, which includes, as a novelty, the pen-ups. The forgery generation imitates a signature by extracting the most perceptually relevant points of the given genuine signature and interpolating them. The capacity to synthesize both static and dynamic signatures using a unique model is evaluated according to its ability to adapt to the static and dynamic signature inter- and intra-personal variability. Our highly promising results suggest the possibility of using the synthesizer in different areas beyond the generation of unlimited databases for biometric training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...