Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(27): e2201000, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504841

RESUMO

2D materials can host long-range magnetic order in the presence of underlying magnetic anisotropy. The ability to realize the full potential of 2D magnets necessitates systematic investigation of the role of individual atomic layers and nanoscale inhomogeneity (i.e., strain) on the emergence of stable magnetic phases. Here, spatially dependent magnetism in few-layer CrSBr is revealed using magnetic force microscopy (MFM) and Monte Carlo-based simulations. Nanoscale visualization of the magnetic sheet susceptibility is extracted from MFM data and force-distance curves, revealing a characteristic onset of both intra- and interlayer magnetic correlations as a function of temperature and layer-thickness. These results demonstrate that the presence of a single uncompensated layer in odd-layer terraces significantly reduces the stability of the low-temperature antiferromagnetic (AFM) phase and gives rise to multiple coexisting magnetic ground states at temperatures close to the bulk Néel temperature (TN ). Furthermore, the AFM phase can be reliably suppressed using modest fields (≈16 mT) from the MFM probe, behaving as a nanoscale magnetic switch. This prototypical study of few-layer CrSBr demonstrates the critical role of layer parity on field-tunable 2D magnetism and validates MFM for use in nanomagnetometry of 2D materials (despite the ubiquitous absence of bulk zero-field magnetism in magnetized sheets).

2.
Phys Rev Lett ; 127(24): 247202, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951793

RESUMO

Two-dimensional (2D) van der Waals (vdW) magnets have been a fertile playground for the discovery and exploration of physical phenomena and new physics. In this Letter, we report the observation of an anomalous thermal Hall effect (THE) with κ_{xy}∼1×10^{-2} W K^{-1} m^{-1} in an insulating van der Waals ferromagnet VI_{3}. The thermal Hall signal persists in the absence of an external magnetic field and flips sign upon the switching of the magnetization. In combination with theoretical calculations, we show that VI_{3} exhibits a dual nature of the THE, i.e., dominated by topological magnons hosted by the ferromagnetic honeycomb lattice at higher temperatures and by phonons induced by the magnon-phonon coupling at lower temperatures. Our results not only position VI_{3} as the first ferromagnetic system to investigate both anomalous magnon and phonon THEs, but also render it as a potential platform for spintronics-magnonics applications.

3.
Nano Lett ; 19(2): 915-920, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620202

RESUMO

Atomically thin chromium triiodide (CrI3) has recently been identified as a layered antiferromagnetic insulator, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. This unusual magnetic structure naturally comprises a series of antialigned spin filters, which can be utilized to make spin-filter magnetic tunnel junctions with very large tunneling magnetoresistance (TMR). Here we report voltage control of TMR formed by four-layer CrI3 sandwiched by monolayer graphene contacts in a dual-gated structure. By varying the gate voltages at fixed magnetic field, the device can be switched reversibly between bistable magnetic states with the same net magnetization but drastically different resistance (by a factor of 10 or more). In addition, without switching the state, the TMR can be continuously modulated between 17,000% and 57,000%, due to the combination of spin-dependent tunnel barrier with changing carrier distributions in the graphene contacts. Our work demonstrates new kinds of magnetically moderated transistor action and opens up possibilities for voltage-controlled van der Waals spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...