Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(4): 910-924, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609720

RESUMO

Rhythmic activity is ubiquitous in neural systems, with theta-resonant pyramidal neurons integrating rhythmic inputs in many cortical structures. Impedance analysis has been widely used to examine frequency-dependent responses of neuronal membranes to rhythmic inputs, but it assumes that the neuronal membrane is a linear system, requiring the use of small signals to stay in a near-linear regime. However, postsynaptic potentials are often large and trigger nonlinear mechanisms (voltage-gated ion channels). The goals of this work were to 1) develop an analysis method to evaluate membrane responses in this nonlinear domain and 2) explore phase relationships between rhythmic stimuli and subthreshold and spiking membrane potential (Vmemb) responses in models of theta-resonant pyramidal neurons. Responses in these output regimes were asymmetrical, with different phase shifts during hyperpolarizing and depolarizing half-cycles. Suprathreshold theta-rhythmic stimuli produced nonstationary Vmemb responses. Sinusoidal inputs produced "phase retreat": action potentials occurred progressively later in cycles of the input stimulus, resulting from adaptation. Sinusoidal current with increasing amplitude over cycles produced "phase advance": action potentials occurred progressively earlier. Phase retreat, phase advance, and subthreshold phase shifts were modulated by multiple ion channel conductances. Our results suggest differential responses of cortical neurons depending on the frequency of oscillatory input, which will play a role in neuronal responses to shifts in network state. We hypothesize that intrinsic cellular properties complement network properties and contribute to in vivo phase-shift phenomena such as phase precession, seen in place and grid cells, and phase roll, also observed in hippocampal CA1 neurons.NEW & NOTEWORTHY We augmented electrical impedance analysis to characterize phase shifts between large-amplitude current stimuli and nonlinear, asymmetric membrane potential responses. We predict different frequency-dependent phase shifts in response excitation vs. inhibition, as well as shifts in spike timing over multiple input cycles, in theta-resonant pyramidal neurons. We hypothesize that these effects contribute to navigation-related phenomena such as phase precession and phase roll. Our neuron-level hypothesis complements, rather than falsifies, prior network-level explanations of these phenomena.


Assuntos
Neurônios , Células Piramidais , Células Piramidais/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Hipocampo/fisiologia , Ritmo Teta/fisiologia
2.
Front Neuroinform ; 16: 884046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832575

RESUMO

The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evolving computer architectures, the addition of new scales and physical processes, accessibility to new users, and efficiency and flexibility for specialists. In order to meet these challenges, we have now substantially modernized NEURON, providing continuous integration, an improved build system and release workflow, and better documentation. With the help of a new source-to-source compiler of the NMODL domain-specific language we have enhanced NEURON's ability to run efficiently, via the CoreNEURON simulation engine, on a variety of hardware platforms, including GPUs. Through the implementation of an optimized in-memory transfer mechanism this performance optimized backend is made easily accessible to users, providing training and model-development paths from laptop to workstation to supercomputer and cloud platform. Similarly, we have been able to accelerate NEURON's reaction-diffusion simulation performance through the use of just-in-time compilation. We show that these efforts have led to a growing developer base, a simpler and more robust software distribution, a wider range of supported computer architectures, a better integration of NEURON with other scientific workflows, and substantially improved performance for the simulation of biophysical and biochemical models.

3.
J Neurophysiol ; 125(4): 1501-1516, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689489

RESUMO

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.


Assuntos
Dendritos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Modelos Teóricos , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Células Piramidais/fisiologia , Tratos Piramidais/fisiologia , Animais , Impedância Elétrica , Humanos
4.
Elife ; 92020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31967544

RESUMO

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.


Neurons carry information in the form of electrical signals. Each of these signals is too weak to detect on its own. But the combined signals from large groups of neurons can be detected using techniques called EEG and MEG. Sensors on or near the scalp detect changes in the electrical activity of groups of neurons from one millisecond to the next. These recordings can also reveal changes in brain activity due to disease. But how do EEG/MEG signals relate to the activity of neural circuits? While neuroscientists can rarely record electrical activity from inside the human brain, it is much easier to do so in other animals. Computer models can then compare these recordings from animals to the signals in human EEG/MEG to infer how the activity of neural circuits is changing. But building and interpreting these models requires advanced skills in mathematics and programming, which not all researchers possess. Neymotin et al. have therefore developed a user-friendly software platform that can help translate human EEG/MEG recordings into circuit-level activity. Known as the Human Neocortical Neurosolver, or HNN for short, the open-source tool enables users to develop and test hypotheses on the neural origin of EEG/MEG signals. The model simulates the electrical activity of cells in the outer layers of the human brain, the neocortex. By feeding human EEG/MEG data into the model, researchers can predict patterns of circuit-level activity that might have given rise to the EEG/MEG data. The HNN software includes tutorials and example datasets for commonly measured signals, including brain rhythms. It is free to use and can be installed on all major computer platforms or run online. HNN will help researchers and clinicians who wish to identify the neural origins of EEG/MEG signals in the healthy or diseased brain. Likewise, it will be useful to researchers studying brain activity in animals, who want to know how their findings might relate to human EEG/MEG signals. As HNN is suitable for users without training in computational neuroscience, it offers an accessible tool for discoveries in translational neuroscience.


Assuntos
Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Neocórtex/fisiologia , Software , Algoritmos , Potenciais Evocados , Humanos , Modelos Neurológicos , Interface Usuário-Computador
5.
Front Neuroanat ; 13: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949034

RESUMO

Precision in neuron names is increasingly needed. We are entering a new era in which classical anatomical criteria are only the beginning toward defining the identity of a neuron as carried in its name. New criteria include patterns of gene expression, membrane properties of channels and receptors, pharmacology of neurotransmitters and neuropeptides, physiological properties of impulse firing, and state-dependent variations in expression of characteristic genes and proteins. These gene and functional properties are increasingly defining neuron types and subtypes. Clarity will therefore be enhanced by conveying as much as possible the genes and properties in the neuron name. Using a tested format of parent-child relations for the region and subregion for naming a neuron, we show how the format can be extended so that these additional properties can become an explicit part of a neuron's identity and name, or archived in a linked properties database. Based on the mouse, examples are provided for neurons in several brain regions as proof of principle, with extension to the complexities of neuron names in the cerebral cortex. The format has dual advantages, of ensuring order in archiving the hundreds of neuron types across all brain regions, as well as facilitating investigation of a given neuron type or given gene or property in the context of all its properties. In particular, we show how the format is extensible to the variety of neuron types and subtypes being revealed by RNA-seq and optogenetics. As current research reveals increasingly complex properties, the proposed approach can facilitate a consensus that goes beyond traditional neuron types.

6.
Concurr Comput ; 27(2): 473-488, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26523124

RESUMO

The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

7.
Front Cell Neurosci ; 8: 310, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25346660

RESUMO

The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with realistic models of hippocampal CA1 pyramidal neurons. Our findings suggest how and why EFs, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration.

8.
Cereb Cortex ; 24(2): 385-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054810

RESUMO

The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads.


Assuntos
Córtex Cerebral/fisiologia , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Potenciais da Membrana/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Técnicas In Vitro , Camundongos , Modelos Neurológicos , Imagem Óptica , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
9.
Science ; 340(6133): 759-62, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23661763

RESUMO

γ-aminobutyric acid-mediated (GABAergic) inhibition plays a critical role in shaping neuronal activity in the neocortex. Numerous experimental investigations have examined perisomatic inhibitory synapses, which control action potential output from pyramidal neurons. However, most inhibitory synapses in the neocortex are formed onto pyramidal cell dendrites, where theoretical studies suggest they may focally regulate cellular activity. The precision of GABAergic control over dendritic electrical and biochemical signaling is unknown. By using cell type-specific optical stimulation in combination with two-photon calcium (Ca(2+)) imaging, we show that somatostatin-expressing interneurons exert compartmentalized control over postsynaptic Ca(2+) signals within individual dendritic spines. This highly focal inhibitory action is mediated by a subset of GABAergic synapses that directly target spine heads. GABAergic inhibition thus participates in localized control of dendritic electrical and biochemical signaling.


Assuntos
Espinhas Dendríticas/fisiologia , Neocórtex/fisiologia , Inibição Neural , Células Piramidais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Cálcio/metabolismo , Channelrhodopsins , Simulação por Computador , Feminino , Ácido Glutâmico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Estimulação Luminosa , Sinapses/fisiologia
10.
PLoS One ; 7(4): e36007, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532875

RESUMO

Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.


Assuntos
Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Estimulação Elétrica , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-20725509

RESUMO

The integrative properties of cortical pyramidal dendrites are essential to the neural basis of cognitive function, but the impact of amyloid beta protein (abeta) on these properties in early Alzheimer's is poorly understood. In animal models, electrophysiological studies of proximal dendrites have shown that abeta induces hyperexcitability by blocking A-type K+ currents (I(A)), disrupting signal integration. The present study uses a computational approach to analyze the hyperexcitability induced in distal dendrites beyond the experimental recording sites. The results show that back-propagating action potentials in the dendrites induce hyperexcitability and excessive calcium concentrations not only in the main apical trunk of pyramidal cell dendrites, but also in their oblique dendrites. Evidence is provided that these thin branches are particularly sensitive to local reductions in I(A). The results suggest the hypothesis that the oblique branches may be most vulnerable to disruptions of I(A) by early exposure to abeta, and point the way to further experimental analysis of these actions as factors in the neural basis of the early decline of cognitive function in Alzheimer's.

12.
J Comput Neurosci ; 17(1): 7-11, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15218350

RESUMO

Wider dissemination and testing of computational models are crucial to the field of computational neuroscience. Databases are being developed to meet this need. ModelDB is a web-accessible database for convenient entry, retrieval, and running of published models on different platforms. This article provides a guide to entering a new model into ModelDB.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Neurociências , Animais , Redes de Comunicação de Computadores , Humanos , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...