Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Toxins (Basel) ; 15(12)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133194

RESUMO

Typical hemolytic uremic syndrome (HUS) is mainly caused by Shiga toxin-producing Escherichia coli (STEC) releasing Shiga toxin 2 (Stx2). Two different structures of this AB5 toxin have been described: uncleaved, with intact B and A chains, and cleaved, with intact B and a nicked A chain consisting of two fragments, A1 and A2, connected by a disulfide bond. Despite having the same toxic effect on sensitive cells, the two forms differ in their binding properties for circulating cells, serum components and complement factors, thus contributing to the pathogenesis of HUS differently. The outcome of STEC infections and the development of HUS could be influenced by the relative amounts of uncleaved or cleaved Stx2 circulating in patients' blood. Cleaved Stx2 was identified and quantified for the first time in four out of eight STEC-infected patients' sera by a method based on the inhibition of cell-free translation. Cleaved Stx2 was present in the sera of patients with toxins bound to neutrophils and in two out of three patients developing HUS, suggesting its involvement in HUS pathogenesis, although in association with other bacterial or host factors.


Assuntos
Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Toxina Shiga II , Toxina Shiga , Neutrófilos , Bactérias , Infecções por Escherichia coli/microbiologia
3.
Am J Pathol ; 191(5): 795-804, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33652019

RESUMO

This review focuses on typical hemolytic uremic syndrome (HUS), a life-threatening sequela of human infections caused, particularly in children, by Shiga toxin-producing Escherichia coli strains. Thrombotic microangiopathy of the brain and the kidney is the end point of toxin action, resulting in the hallmarks of HUS (ie, thrombocytopenia, anemia, and acute renal failure). A growing body of evidence points to the role of extracellular vesicles released in the blood of patients by toxin-challenged circulating cells (monocytes, neutrophils, and erythrocytes) and platelets, as a key factor in the pathogenesis of HUS. This review provides i) an updated description of the pathogenesis of Shiga toxin-producing E. coli infections; ii) an analysis of blood cell-derived extracellular vesicles, and of their parent cells, as triggering factors in HUS; and iii) a model explaining why Shiga toxin-containing vesicles dock preferentially to the endothelia of target organs.


Assuntos
Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/patologia , Escherichia coli Shiga Toxigênica/fisiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Anemia/etiologia , Anemia/patologia , Células Endoteliais/patologia , Eritrócitos/patologia , Vesículas Extracelulares/patologia , Síndrome Hemolítico-Urêmica/complicações , Humanos , Monócitos/patologia , Neutrófilos/patologia , Trombocitopenia/etiologia , Trombocitopenia/patologia
4.
Toxins (Basel) ; 13(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530614

RESUMO

The pathogenesis of Escherichia coli-induced hemolytic uremic syndrome (eHUS) caused by infections with pathogenic Shiga toxin (Stx) producing E. coli (STEC) is centered on bacterial (e.g., Stx) and host factors (circulating cells, complement system, serum proteins) whose interaction is crucial for the immediate outcome and for the development of this life-threatening sequela. Stx2a, associated to circulating cells (early toxemia) or extracellular vesicles (late toxemia) in blood, is considered the main pathogenic factor in the development of eHUS. Recently, it was found that the functional properties of Stx2a (binding to circulating cells and complement components) change according to modifications of the structure of the toxin, i.e., after a single cleavage of the A subunit resulting in two fragments, A1 and A2, linked by a disulfide bridge. Herein, we describe a method to be used for the detection of the cleaved form of Stx2a in the serum of STEC-infected or eHUS patients. The method is based on the detection of the boosted inhibitory activity of the cleaved toxin, upon treatment with reducing agents, on a rabbit cell-free translation system reconstituted with human ribosomes. The method overcomes the technical problem caused by the presence of inhibitors of translation in human serum that have been stalled by the addition of RNAase blockers and by treatment with immobilized protein G. This method, allowing the detection of Stx2a at concentrations similar to those found by ELISA in the blood of STEC-infected patients, could be a useful tool to study the contribution of the cleaved form of Stx2a in the pathogenesis of eHUS.


Assuntos
Bioensaio , Infecções por Escherichia coli/diagnóstico , Síndrome Hemolítico-Urêmica/diagnóstico , Toxina Shiga II/sangue , Escherichia coli Shiga Toxigênica/metabolismo , Animais , Biomarcadores/sangue , Sistema Livre de Células/metabolismo , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Valor Preditivo dos Testes , Coelhos , Reticulócitos/metabolismo , Ribossomos/metabolismo
5.
Thromb Haemost ; 120(1): 107-120, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858520

RESUMO

Hemolytic uremic syndrome (HUS), the leading cause of acute renal failure in children (< 3 years), is mainly related to Shiga toxins (Stx)-producing Escherichia coli (STEC) infections. STEC are confined to the gut resulting in hemorrhagic colitis, whereas Stx are delivered in blood to target kidney and brain, with unclear mechanisms, triggering HUS in 5 to 15% of infected children. Stx were found on circulating cells, free in sera (soluble Stx) or in blood cell-derived microvesicles (particulate Stx), whereby the relationship between these forms of circulating toxins is unclear. Here, we have examined 2,846 children with bloody diarrhea and found evidence of STEC infection in 5%. Twenty patients were enrolled to study the natural course of STEC infections before the onset of HUS. In patients, Stx were found to be associated to circulating cells and/or free and functionally active in sera. In most children, Stx were bound to neutrophils when high amounts of toxins were found in feces. Time-course analysis showed that Stx increased transiently in patients' sera while the decrease of toxin amount on leukocytes was observed. Notably, patients who recovered (85%) displayed different settings than those who developed HUS (15%). The distinctive feature of the latter group was the presence in blood of particulate Stx2 (Stx2 sedimented at g-forces corresponding to 1 µm microvesicles) the day before diagnosis of HUS, during the release phase of toxins from circulating cells. This observation strongly suggests the involvement of blood cell-derived particulate Stx2 in the transition from hemorrhagic colitis to HUS.


Assuntos
Infecções por Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/metabolismo , Rim/metabolismo , Neutrófilos/metabolismo , Material Particulado/sangue , Toxina Shiga II/sangue , Escherichia coli Shiga Toxigênica/fisiologia , Adolescente , Linhagem Celular , Criança , Pré-Escolar , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Rim/patologia , Masculino , Toxina Shiga II/genética
6.
Oxid Med Cell Longev ; 2019: 6528106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396304

RESUMO

In the cold environments of the interstellar medium, a variety of molecules in which a hydrogen (H) atom has been replaced by its heavier isotope deuterium (D) can be found. From its emergence, life had to counteract the toxic action of many agents, which posed a constant threat to its development and propagation. Oxygen-reactive species are archaic toxicants that lead to protein damage and genomic instability. Most of the oxidative lesions involve cleavage of C-H bonds and H abstraction. According to free radical chemistry principles, the substitution of D for H in oxidation-sensitive positions of cellular components should confer protection against the oxidative attack without compromising the chemical identity of the compounds. Here, we show that deuterated nucleosides and proteins protect from oxidative damage. Our data suggest a new, subtle but likely role of D in terrestrial life's evolution in that its inclusion in critical biomolecules might have facilitated their resistance during the infinite generations of life entities, cells, and organisms.


Assuntos
Deutério/química , Estresse Oxidativo , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Dano ao DNA/efeitos dos fármacos , Radicais Livres/química , Produtos Finais de Glicação Avançada/análise , Humanos , Células Jurkat , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Proteínas/química , Proteínas/metabolismo
7.
Cell Microbiol ; 21(5): e13000, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30578712

RESUMO

Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)-producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A-subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re-evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS-pathogenesis and to develop therapeutic approaches.


Assuntos
Escherichia coli/química , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Chlorocebus aethiops , Dicroísmo Circular , Fator H do Complemento/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ligação Proteica , Conformação Proteica , Toxina Shiga II/genética , Triexosilceramidas/metabolismo , Tripsina , Células Vero
8.
Toxins (Basel) ; 10(9)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231570

RESUMO

Shiga toxin 2a (Stx2a) is the main virulence factor produced by pathogenic Escherichia coli strains (Stx-producing E. coli, STEC) responsible for hemorrhagic colitis and the life-threatening sequela hemolytic uremic syndrome in children. The toxin released in the intestine by STEC targets the globotriaosylceramide receptor (Gb3Cer) present on the endothelial cells of the brain and the kidney after a transient blood phase during which Stx2a interacts with blood components, such as neutrophils, which, conversely, recognize Stx through Toll-like receptor 4 (TLR4). Among non-cellular blood constituents, human amyloid P component (HuSAP) is considered a negative modulating factor that specifically binds Stx2a and impairs its toxic action. Here, we show that the soluble extracellular domain of TLR4 inhibits the binding of Stx2a to neutrophils, assessed by indirect flow cytometric analysis. Moreover, by using human sensitive Gb3Cer-expressing cells (Raji cells) we found that the complex Stx2a/soluble TLR4 escaped from capture by HuSAP allowing the toxin to target and damage human cells, as assayed by measuring translation inhibition, the typical Stx-induced functional impairment. Thus, soluble TLR4 stood out as a positive modulating factor for Stx2a. In the paper, these findings have been discussed in the context of the pathogenesis of hemolytic uremic syndrome.


Assuntos
Componente Amiloide P Sérico/metabolismo , Toxina Shiga II/toxicidade , Receptor 4 Toll-Like/metabolismo , Linhagem Celular Tumoral , Humanos , Neutrófilos/metabolismo , Domínios Proteicos
9.
Int J Med Microbiol ; 308(7): 940-946, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29983334

RESUMO

The life-threatening sequela of hemorrhagic colitis induced by Shiga toxins (Stx)-producing Escherichia coli (STEC) infections in humans is hemolytic uremic syndrome (HUS), the main cause of acute renal failure in early childhood. The key step in the pathogenesis of HUS is the appearance of Stx in the blood of infected patients because these powerful virulence factors are capable of inducing severe microangiopathic lesions in the kidney. During precocious toxemia, which occurs in patients before the onset of HUS during the intestinal phase, Stx bind to several different circulating cells. An early response of these cells might include the release of proinflammatory mediators associated with the development of HUS. Here, we show that primary human monocytes stimulated with Shiga toxin 1a (Stx1a) through the glycolipid receptor globotriaosylceramide released larger amounts of proinflammatory molecules (IL-1ß, TNFα, IL-6, G-CSF, CXCL8, CCL2, CCL4) than Stx1a-treated neutrophils. The mediators (except IL-1ß) are among the top six proinflammatory mediators found in the sera from patients with HUS in different studies. The molecules appear to be involved in different pathogenetic steps of HUS, i.e. sensitization of renal endothelial cells to the toxin actions (IL-1ß, TNFα), activation of circulating monocytes and neutrophils (CXCL8, CCL2, CCL4) and increase in neutrophil counts in patients with poor prognosis (G-CSF). Hence, a role of circulating monocytes in the very early phases of the pathogenetic process culminating with HUS can be envisaged. Impairment of the events of precocious toxemia would prevent or reduce the risk of HUS in STEC-infected children.


Assuntos
Citocinas/sangue , Síndrome Hemolítico-Urêmica/patologia , Monócitos/metabolismo , Toxina Shiga I/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Triexosilceramidas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Interleucina-8/sangue , Neutrófilos/metabolismo
10.
Biochem Biophys Res Commun ; 485(4): 742-745, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28257841

RESUMO

Most cancer cells use aerobic glycolysis to fuel their growth and many efforts are made to selectively block this metabolic pathway in cancer cells by inhibiting lactate dehydrogenase A (LDHA). However, LDHA is a moonlighting protein which exerts functions also in the nucleus as a factor associated to transcriptional complexes. Here we found that two small molecules which inhibit the enzymatic activity of LDHA hinder the transcription of histone 2B gene independently from the block of aerobic glycolysis. Moreover, we observed that silencing this gene reduces cell replication, hence suggesting that the inhibition of LDHA can also affect the proliferation of normal non-glycolysing dividing cells.


Assuntos
Glicólise/genética , Histonas/genética , L-Lactato Desidrogenase/genética , Transcrição Gênica/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Galactose/farmacologia , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Células HCT116 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Ácido Oxâmico/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 483(3): 936-940, 2017 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082201

RESUMO

Protein synthesis is one of the main cellular functions inhibited during hypertonic challenge. The subsequent accumulation of the compatible osmolyte betaine during the later adaptive response allows not only recovery of translation but also its stimulation. In this paper, we show that betaine modulates translation by enhancing the formation of cap-independent 48 S pre-initiation complexes, leaving cap-dependent 48 S pre-initiation complexes basically unchanged. In the presence of betaine, CrPV IRES- and sodium-dependent neutral amino acid transporter-2 (SNAT2) 5'-UTR-driven translation is 2- and 1.5-fold stimulated in MCF7 cells, respectively. Thus, betaine could provide an advantage in translation of messengers coding for proteins implicated in the response of cells to different stressors, which are often recognized by ribosomal 40 S subunit through simplified cap-independent mechanisms.


Assuntos
Betaína/metabolismo , Betaína/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Capuzes de RNA/metabolismo , Regiões 5' não Traduzidas , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Sistema Livre de Células , Humanos , Soluções Hipertônicas , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Pressão Osmótica , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética , Coelhos , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo
12.
Nat Protoc ; 11(7): 1309-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27336708

RESUMO

We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro-transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts. The whole procedure can be completed in ∼2.5 d (plus 2 weeks for RRL preparation and cell expansion time). This protocol can be applied to study intrinsic functional properties (cis-acting element-mediated translation initiation or translational fidelity) of ribosome populations from different sources (including nonhuman origin). It is therefore useful for the characterization of ribosomal function in ribosomopathies and cancer, and it will be applicable in the emerging fields of ribosome diversity and specialized ribosomes.


Assuntos
Fracionamento Celular/métodos , Sistema Livre de Células/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Transcrição Gênica , Animais , Genes Reporter , Humanos , Coelhos , Reticulócitos/metabolismo , Ribossomos/metabolismo
13.
J Immunol ; 196(3): 1177-85, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695372

RESUMO

Hemolytic uremic syndrome (HUS) is the life-threatenig sequela of intestinal infections by Shiga toxin (Stx)-producing Escherichia coli (STEC) in children. Human neutrophils specifically bind Stx through TLR4, the receptor of LPS. The binding could be considered protective (Stx sequestration) or harmful (toxin delivery to target organs). The amount of Stx on neutrophils is in equilibrium with the amount of Stx present in the gut, and it is also related to renal and neurologic symptoms. The TLR4-mediated interaction of LPS with innate immune cells is hampered by the well-known antibiotic polymyxin B. In this study, we show that the same antibiotic impairs the binding of Stx to neutrophils, also blocking their functional effects (release of CXCL8, formation of neutrophil/platelet aggregates) involved in HUS pathogenesis. Controls for contaminating LPS in Stx-induced neutrophil responses inhibited by polymyxin B were performed. Stx interact with human neutrophils through their A chain, since these leukocytes do not express globotriaosylceramide, the specific receptor for Stx B chains. Consistently, polymyxin B blocked the enzymatic activity of Stx1, Stx2, Stx1 A chain, and the analogous plant protein gelonin, whereas the antibiotic did not show any protective effect on Stx-induced cytotoxicity in globotriaosylceramide-expressing Raji cells. Antibiotic administration is not recommended in human STEC infections during the prodromal intestinal phase, and the toxicity of polymyxin B could further discourage its therapeutic use. However, nontoxic, nonbactericidal polymyxin derivatives have been developed and might be used in animal models of STEC infection to study their efficacy in preventing the onset of HUS during the systemic blood phase of Stx.


Assuntos
Antibacterianos/farmacologia , Síndrome Hemolítico-Urêmica/imunologia , Neutrófilos/efeitos dos fármacos , Polimixina B/farmacologia , Toxina Shiga/toxicidade , Animais , Citometria de Fluxo , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Humanos , Camundongos , Neutrófilos/imunologia
14.
Toxins (Basel) ; 7(11): 4564-76, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556372

RESUMO

Shiga toxins (Stx) have a definite role in the development of hemolytic uremic syndrome in children with hemorrhagic colitis caused by pathogenic Stx-producing Escherichia coli (STEC) strains. The dramatic effects of these toxins on the microvasculature of different organs, particularly of the kidney, are well known, whereas there is no consensus on the mechanism by which Stx reach the endothelia of target organs and/or indirectly injure these body sites. We hereby describe a quick (4 h), radioactive, Raji cell-based method designed for the detection of Stx in human sera. The assay monitors the translation impairment induced by these powerful inhibitors of protein synthesis, which are identified properly by neutralizing their activity with specific monoclonal antibodies. By this method, we detected for the first time the functional activity of Stx in sera of STEC-infected patients during hemorrhagic colitis. Recent research has pointed to a dynamic process of Stx-induced renal intoxication in which concurrent and interactive steps are involved. Our rapid and specific method could be useful for studying the kinetics of Stx during the natural course of STEC infection and the interplay between Stx activity in serum and Stx presence in different blood fractions (neutrophils, monocytes, platelets, leukocyte-platelet aggregates, microvesicles, lipoproteins).


Assuntos
Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxinas Shiga/sangue , Toxinas Shiga/toxicidade , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Criança , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Septicemia Hemorrágica/sangue , Humanos , Inibidores da Síntese de Proteínas/sangue , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade , Toxinas Shiga/antagonistas & inibidores , Escherichia coli Shiga Toxigênica/patogenicidade
15.
FASEB J ; 29(8): 3472-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25934701

RESUMO

Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish definitely whether defective dyskerin function might determine an intrinsic ribosomal defect leading to an altered synthetic activity. Therefore, ribosomes from dyskerin-depleted human cells were purified and 1) added to a controlled reticulocyte cell-free system devoid of ribosomes to study mRNA translation; 2) analyzed for protein contamination and composition by mass spectrometry, 3) analyzed for global pseudouridylation levels. Ribosomes purified from dyskerin-depleted cells showed altered translational fidelity and internal ribosome entry site (IRES)-mediated translation. These ribosomes displayed reduced uridine modification, whereas they were not different in terms of protein contamination or ribosomal protein composition with respect to ribosomes from matched control cells with full dyskerin activity. In conclusion, lack of dyskerin function in human cells induces a defect in rRNA uridine modification, which is sufficient to alter ribosome activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sistema Livre de Células/metabolismo , Humanos , Células MCF-7 , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Ribossomos/genética , Telômero/genética , Telômero/metabolismo
16.
J Immunol ; 191(9): 4748-58, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068665

RESUMO

Hemolytic uremic syndrome (HUS) caused by intestinal Shiga toxin-producing Escherichia coli infections is a worldwide health problem, as dramatically exemplified by the German outbreak occurred in summer 2011 and by a constant burden of cases in children. Shiga toxins (Stx) play a pivotal role in HUS by triggering endothelial damage in kidney and brain through globotriaosylceramide (Gb3Cer) receptor targeting. Moreover, Stx interact with human neutrophils, as experimentally demonstrated in vitro and as observed in patients with HUS. A neutrophil-protective role on endothelial damage (sequestration of circulating toxins) and a causative role in toxin delivery from the gut to the kidney (piggyback transport) have been suggested in different studies. However, the receptor that recognizes Stx in human neutrophils, which do not express Gb3Cer, has not been identified. In this study, by competition and functional experiments with appropriate agonists and antagonists (LPS, anti-TLR4 Abs, respectively), we have identified TLR4 as the receptor that specifically recognizes Stx1 and Stx2 in human neutrophils. Accordingly, these treatments displaced both toxin variants from neutrophils and, upon challenge with Stx1 or Stx2, neutrophils displayed the same pattern of cytokine expression as in response to LPS (assessed by quantitative RT-PCR, ELISA, or multiplexed Luminex-based immunoassays). Moreover, data were supported by adequate controls excluding any potential interference of contaminating LPS in Stx-binding and activation of neutrophils. The identification of the Stx-receptor on neutrophils provides additional elements to foster the understanding of the pathophysiology of HUS and could have an important effect on the development of therapeutic strategies.


Assuntos
Neutrófilos/metabolismo , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Receptor 4 Toll-Like/imunologia , Anticorpos Monoclonais , Citocinas/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Infecções por Escherichia coli/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Lipopolissacarídeos , Neutrófilos/imunologia , Triexosilceramidas/metabolismo
17.
Toxins (Basel) ; 5(2): 431-44, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23430607

RESUMO

Shiga toxin 1 (Stx1), produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77), causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05-0.1 pM), inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation.


Assuntos
Antineoplásicos/administração & dosagem , Ciclofosfamida/análogos & derivados , Inibidores da Síntese de Proteínas/administração & dosagem , Toxina Shiga I/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Reparo do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Células HL-60 , Células Endoteliais da Veia Umbilical Humana , Humanos
18.
Biochem Biophys Res Commun ; 430(2): 466-9, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23237800

RESUMO

Lactate dehydrogenase A (LDH-A) binds single stranded DNA (ssDNA) and stimulates cell transcription. Binding is prevented by NADH, suggesting that the coenzyme site is involved in the interaction LDH-A/ssDNA. We recently identified an inhibitor of LDH-A enzymatic activity (Galloflavin, GF) which occupies the NADH site. In the experiments reported here we studied whether GF can also hinder the binding of LDH-A to ssDNA and investigated its effects on RNA synthesis in cultured cells. Using a filter binding assay we observed that 4 µM GF inhibited the binding of human LDH-A to a single stranded [(3)H]DNA sample by 50%. After only 0.5-1h, 50-100 µM GF inhibited RNA synthesis in SW620 cells maintained in a medium in which galactose substituted glucose. In these culture conditions, SW620 cells did not produce lactic acid and effects caused by the inhibition of the enzymatic activity of LDH-A could be excluded. Novel LDH-A inhibitors which hinder aerobic glycolysis of cancer cells are at present actively searched. Our results suggest that: (i) inhibitors which bind the NADH site can exert their antiproliferative activity not only by blocking aerobic glycolysis but also by causing an inhibition of RNA synthesis independent from the effect on glycolysis; (ii) GF can be a useful tool to study the biological role of LDH-A binding to ssDNA.


Assuntos
DNA de Cadeia Simples/metabolismo , Isocumarinas/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , RNA/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Ligação Proteica/efeitos dos fármacos , RNA/biossíntese
19.
J Biol Chem ; 286(40): 34514-21, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21832076

RESUMO

Shiga toxins (Stx) play an important role in the pathogenesis of hemolytic uremic syndrome, a life-threatening renal sequela of human intestinal infection caused by specific Escherichia coli strains. Stx target a restricted subset of human endothelial cells that possess the globotriaosylceramide receptor, like that in renal glomeruli. The toxins, composed of five B chains and a single enzymatic A chain, by removing adenines from ribosomes and DNA, trigger apoptosis and the production of pro-inflammatory cytokines in target cells. Because bacteria are confined to the gut, the toxins move to the kidney through the circulation. Polymorphonuclear leukocytes (PMN) have been indicated as the carriers that "piggyback" shuttle toxins to the kidney. However, there is no consensus on this topic, because not all laboratories have been able to reproduce the Stx/PMN interaction. Here, we demonstrate that conformational changes of Shiga toxin 1, with reduction of α-helix content and exposition to solvent of hydrophobic tryptophan residues, cause a loss of PMN binding activity. The partially unfolded toxin was found to express both enzymatic and globotriaosylceramide binding activities being fully active in intoxicating human endothelial cells; this suggests the presence of a distinct PMN-binding domain. By reviewing functional and structural data, we suggest that A chain moieties close to Trp-203 are recognized by PMN. Our findings could help explain the conflicting results regarding Stx/PMN interactions, especially as the groups reporting positive results obtained Stx by single-step affinity chromatography, which could have preserved the correct folding of Stx with respect to more complicated multi-step purification methods.


Assuntos
Neutrófilos/citologia , Toxina Shiga I/metabolismo , Toxinas Shiga/metabolismo , Adenina/química , Toxinas Bacterianas/metabolismo , Dicroísmo Circular , Células Endoteliais/citologia , Escherichia coli/genética , Corantes Fluorescentes/farmacologia , Síndrome Hemolítico-Urêmica/metabolismo , Humanos , Cinética , Neutrófilos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Ricina/química , Toxina Shiga , Veias Umbilicais/citologia
20.
Pediatr Infect Dis J ; 30(6): 486-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21164386

RESUMO

BACKGROUND: Intestinal infections with Shiga toxin-producing Escherichia coli (STEC) in children can lead to the hemolytic uremic syndrome (HUS). Shiga toxins (Stx) released in the gut by bacteria enter the blood stream and target the kidney causing endothelial injury. Free toxins have never been detected in the blood of HUS patients, but they have been found on the surface of polymorphonuclear leukocytes (PMN). METHODS: With respect to their clinical features, the clinical relevance of the amounts of serum Stx (cytotoxicity assay with human endothelial cells) and PMN-bound Stx (cytofluorimetric assay) in 46 patients with STEC-associated HUS was evaluated. RESULTS: Stx-positive PMN were found in 60% of patients, whereas negligible amounts of free Stx were detected in the sera. Patients with high amounts of Stx on PMN showed preserved or slightly impaired renal function (incomplete form of HUS), whereas cases with low amounts of Stx usually presented evidence of acute renal failure. CONCLUSIONS: These observations suggest that the extent of renal damage in children with STEC-associated HUS could depend on the concentration of Stx present on their PMN and presumably delivered by them to the kidney. As previously shown by experimental models from our laboratory, high amounts of Stx could induce a reduced release of cytokines by the renal endothelium, with a consequent lower degree of inflammation. Conversely, low toxin amounts can trigger the cytokine cascade, provoking inflammation, thereby leading to tissue damage.


Assuntos
Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/patologia , Rim/patologia , Neutrófilos/química , Toxina Shiga/sangue , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Lactente , Masculino , Toxina Shiga/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...