Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 171: 112196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924964

RESUMO

Lumbrical muscles originate on the flexor digitorum profundus (FDP) tendons and, during fist making, they move in the same direction when FDP muscle produces maximal proximal tendon gliding. Injuries of the bipennate lumbricals have been described when a shear force acts between the origins on adjacent tendons of the FDP, as they glide in opposite directions in asymmetric hand postures. Other structures of the deep flexors complex can be affected during this injury mechanism, due to the so-called quadriga effect, which can commonly occur during sport climbing practise. Biomechanical studies are needed to better understand the pathomechanism. A cadaveric study was designed to analyse the effects of load during the fourth lumbrical muscle injury mechanism. The amount of FDP tendon gliding and metacarpophalangeal (MCP) joint flexion of the 5th finger were calculated. Ten fresh-frozen cadaveric specimens (ten non-paired forearms and hands) were used. The specimens were placed on a custom-made loading apparatus. The FDP of the 5th finger was loaded, inducing isolated flexion of the 5th finger, until rupture. The rupture occurred in all specimens, under a load of 11 kg (SD 4.94), at 9.23 mm of proximal tendon gliding (SD 3.55) and at 21.4° (SD 28.91) of MCP joint flexion. Lumbrical muscle detachment from the 4th FDP was observed, from distal to proximal, and changes in FDP tendons at the distal forearm level too. The quadriga effect can lead to injury of the bipennate lumbrical muscles and the deep flexors complex in the hand and forearm.


Assuntos
Cadáver , Músculo Esquelético , Tendões , Humanos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Tendões/fisiopatologia , Tendões/fisiologia , Fenômenos Biomecânicos , Masculino , Montanhismo/fisiologia , Pessoa de Meia-Idade , Idoso , Traumatismos dos Tendões/fisiopatologia , Feminino , Antebraço/fisiopatologia , Antebraço/fisiologia , Ruptura/fisiopatologia , Articulação Metacarpofalângica/fisiopatologia , Articulação Metacarpofalângica/lesões , Modelos Biológicos
2.
J Clin Med ; 12(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109191

RESUMO

Proximal interphalangeal joint flexion contracture is a frequent condition in hand therapy. Clinicians most frequently apply orthosis management for conservative treatment. Orthoses should apply forces for long periods of time following the total end range time (TERT) concept. These forces necessarily transmit through the skin; however, skin has physiological limitations determined by blood flow. Using three fresh frozen human cadavers, this study quantified and compared forces, skin contact surfaces and pressure of two finger orthoses, an elastic tension digital neoprene orthosis (ETDNO) and an LMB 501 orthosis. The study also investigated the effects of a new method of orthosis construction (serial ETDNO orthoses) that customizes forces to a specific finger position. We evaluated forces and contact surfaces for multiple ETDNO models tailored to the cadaver fingers in multiple PIP flexion positions. The results showed that the LMB 501 orthosis applied pressures beyond the recommended limits if applied for more than eight hours a day. This fact was the cause of time limited LMB orthosis application. This results also show that, at 30° of PIPJ flexion, straight ETDNOs created a mean pressure approaching the end of the recommended pressure limits. If the therapist modified the ETDNO design, the skin pressure decreased and reduced the risk of skin damage. With the results of this study, we concluded that for PIPJ flexion contracture, the upper limit of force application is 200 g (1.96 N). Forces beyond this amount would likely cause skin irritation and possibly skin injuries. This would cause a reduction in the daily TERT and limit outcomes.

3.
J Clin Med ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902774

RESUMO

Focusing on fingers with proximal interphalangeal joint flexion contractures, this study seeks to determine whether significant differences exist between the joint passive range of motion PROM improvement when receiving higher doses of daily total end range time (TERT) compared to those that receive lower doses. The study randomized a parallel group of fifty-seven fingers in fifty patients with concealed allocation and assessor blinding. Divided into two groups receiving different doses of daily total end range time with an elastic tension digital neoprene orthosis, they also participated in an identical exercise program. Patients reported orthosis wear time, and the researchers performed goniometric measurements at every session during the three-week period. The primary outcome related the time patients wore the orthosis to the degrees of improvement in PROM extension. Compared to group B (daily TERT of twelve hours), group A (TERT, twenty+ hours) showed a statistically significant greater improvement in PROM after three weeks of treatment. Group A improved by a mean of 29° compared to group B's mean of 19° improvement. This study provides evidence that a higher dose of daily TERT can generate better results in the treatment of the proximal interphalangeal joint flexion contractures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...