Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnobiol Ethnomed ; 19(1): 8, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964580

RESUMO

BACKGROUND: Proven toxicity and environmental burdens caused by artificial dyes have motivated dyeing industries to turn to natural alternatives. Plant-based dyestuffs are an interesting group of alternative crops. Reunion Island located in the Indian Ocean is the only European region in the southern hemisphere. It has a great number of assets to find new molecules in the abundant plant biodiversity. However, the dye-producing plants diversity in this island had not been documented to date. METHODOLOGY: The assessment of the Reunion Island's plant biodiversity through the "PLANTIN" project allowed us to establish here the first ethnobotanical inventory of plants growing on Reunion Island which may have promising properties as a new alternative source of dyes or colorants for the industries. First, an ethnobotanical survey focused on the uses of plants traditionally used in dyeing was conducted on local stakeholders. Then, the importance of different criteria (e.g., endemicity, accessibility and cultivability, plant organs used for the extraction, industrial interests of the species, etc.) has been considered to establish a classification method of the species, to finally select the most interesting plants which have been further harvested and investigated for their coloring property and dyeing application on natural fibers. RESULTS: The results showed that local people have accumulated traditional knowledge of dyeing plants, but that this approach had been discontinued in Reunion. The uses of 194 plant species potentially rich in dyes or pigments, belonging to 72 different families, with diverse botanical status (endemic, native, introduced or alien-invasive species) have been recorded. Then, 43 species were harvested and their coloring property were investigated. It demonstrated that dyes extracted from promising species, e.g., Terminalia bentzoe, Weinmannia tinctoria, Thespesia populnea, Erythroxylum laurifolium, Morinda citrifolia, Leea guinensis, Ochrosia borbonica, Danais fragrans, Terminalia cattapa, Casuarina equisetifolia, and Coccoloba uvifera, amongst others, could be used as new textile dyes. Their efficacy in the wool and cotton dyeing has been successfully demonstrated here. CONCLUSION: These plant-based dyestuffs showed promising coloring properties with different shades that could meet industrial application requirement. It's an area that could promote local cultural inheritance, create opportunity for business and farmers, and that can make a significant contribution to preserving endangered native species by supporting reforestation schemes. Additional researches are in progress to evaluate the safety of these plant-based colored extracts, their chemical composition and biological activities.


Assuntos
Corantes , Etnobotânica , Humanos , Reunião , Extratos Vegetais , Produtos Agrícolas
2.
Life (Basel) ; 12(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36556363

RESUMO

α-unsaturated esters are fruity-aromatic compounds which are largely spread in the volatilome of many different fruits, but they are rarely found in the volatilome of yeasts. The yeast S. suaveolens has been recently shown to produce relatively high amounts of α-unsaturated esters and it appears to be an interesting model for the production of these compounds. This study aimed to isolate new α-unsaturated ester-producing yeasts by focusing on strains displaying a similar metabolism to S. suaveolens. While the production of α-unsaturated esters by S. suaveolens is believed to be closely related to its ability to grow on media containing branched-chain amino acids (isoleucine, leucine and valine) as the sole carbon source (ILV+ phenotype), in this study, an original screening method was developed that selects for yeast strains displaying ILV+ phenotypes and is able to produce α-unsaturated esters. Among the 119 yeast strains isolated from the feces of 42 different South African wild animal species, 43 isolates showed the ILV+ phenotype, among which 12 strains were able to produce α-unsaturated esters. Two interesting α-unsaturated esters were detected in two freshly isolated strains, both identified as Galactomyces candidus. These new esters were detected neither in the volatilome of the reference strain S. suaveolens, nor in any other yeast species previously studied for their aroma production. This work demonstrated the efficiency of an original method to rapidly screen for α-unsaturated ester-producing yeasts. In addition, it demonstrated that wild animal feces are interesting resources to isolate novel strains producing compounds with original aromas.

3.
J Fungi (Basel) ; 7(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34947014

RESUMO

Yeast volatile organic compounds (VOCs), i.e. low molecular weight organic acids, alcohols and esters, are considered as potential and sustainable sources of natural aromas that can replace commonly used artificial flavors in food and other industrial sectors. Although research generally focuses on the yeast Saccharomyces cerevisiae, other so-called unconventional yeasts (NCY) are beginning to attract the attention of researchers, particularly for their ability to produce alternative panels of VOCs. With this respect, a Saprochaete suaveolens strain isolated from dragon fruit in Reunion Island was shown to produce α-unsaturated esters from branched-chain amino acids (BCAAs) such as isobutyl, isoamyl or ethyl tiglate, which are rarely found in other yeasts strains. Given that ß-oxidation allows the growth of S. suaveolens on BCAAs as sole carbon source, we developped a method based on UV mutagenesis to generate mutants that can no longer grow on BCAAs, while redirecting the carbon flow towards esterification of α-unsaturated esters. Among the 15,000 clones generated through UV irradiation, we identified nine clones unable to grow on BCAAs with one of them able to produce eight times more VOCs as compared to the wild-type strain. This higher production of α-unsaturated esters in this mutant strain coincided with an almost complete loss of enoyl-CoA hydratase activity of the ß-oxidation pathways and with a twofold increase of acyl-CoA hydrolase with not significant changes in the enzymes of the Ehrlich pathway. Moreover, from our knowledge, it constituted the first example of VOCs enhancement in a microbial strain by UV mutagenesis.

4.
5.
Mar Drugs ; 19(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925595

RESUMO

Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.


Assuntos
Microbiologia Industrial , Pigmentos Biológicos/metabolismo , Talaromyces/metabolismo , Biomassa , Sedimentos Geológicos/microbiologia , Sulfato de Magnésio/metabolismo , Modelos Estatísticos , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , Sacarose/metabolismo , Talaromyces/crescimento & desenvolvimento , Leveduras/metabolismo
6.
Food Chem ; 346: 128804, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418411

RESUMO

Fruity beers can be promoted through production of flavoring compounds during fermentation by partial replacement of brewing yeast by non-conventional-yeasts with high aroma production abilities. We evaluated here the use of a wild Saprochaete suaveolens strain, producing atypical aroma compounds, to produce new natural fruity beer, while keeping classical production conditions used in brewing industry. S. suaveolens was inoculated as starter of culture during beer fermentation and the fermentation performance was evaluated through measurement of several physicochemical parameters. The aroma profile of the engineered beers was monitored using HS-SPME GC/MS. The results showed that high fruity aroma and low-ethanol content beers were obtained through single-fermentation using S. suaveolens. We also demonstrated that during mixed-fermentation, S. suaveolens maintained high metabolic activity and allowed production of beer enriched with fruity aroma. Production of high or low ethanol content fruity beer could be achieved by varying the composition of the starter of culture.


Assuntos
Fermentação , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Cerveja/análise , Aromatizantes/análise , Frutas/química , Geotrichum/metabolismo , Odorantes/análise
7.
J Fungi (Basel) ; 6(4)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352851

RESUMO

Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid-liquid extraction methods requiring large volumes of various organic solvents and time. To address this question from a different angle, we proposed, here, to investigate the use of three different aqueous two-phase extraction systems using either ammonium- or imidazolium-based ionic liquids. We applied these to four fermentation broths of Talaromyces albobiverticillius (deep red pigment producer), Emericella purpurea (red pigment producer), Paecilomyces marquandii (yellow pigment producer) and Trichoderma harzianum (yellow-brown pigment producer) to investigate their selective extraction abilities towards the detection of polyketide-based pigments. Our findings led us to conclude that (i) these alternative extraction systems using ionic liquids as greener extractant means worked well for this extraction of colored molecules from the fermentation broths of the filamentous fungi investigated here; (ii) tetrabutylammonium bromide, [N4444]Br-, showed the best pigment extraction ability, with a higher putative affinity for azaphilone red pigments; (iii) the back extraction and recovery of the fungal pigments from ionic liquid phases remained the limiting point of the method under our selected conditions for potential industrial applications. Nevertheless, these alternative extraction procedures appeared to be promising ways for the detection of polyketide-based colorants in the submerged cultures of filamentous fungi.

8.
Microorganisms ; 8(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287158

RESUMO

Many species of Talaromyces of marine origin could be considered as non-toxigenic fungal cell factory. Some strains could produce water-soluble active biopigments in submerged cultures. These fungal pigments are of interest due to their applications in the design of new pharmaceutical products. In this study, the azaphilone red pigments and ergosterol derivatives produced by a wild type of Talaromyces sp. 30570 (CBS 206.89 B) marine-derived fungal strain with industrial relevance were described. The strain was isolated from the coral reef of the Réunion island. An alternative extraction of the fungal pigments using high pressure with eco-friendly solvents was studied. Twelve different red pigments were detected, including two pigmented ergosterol derivatives. Nine metabolites were identified using HPLC-PDA-ESI/MS as Monascus-like azaphilone pigments. In particular, derivatives of nitrogen-containing azaphilone red pigment, like PP-R, 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V, N-threonine-monascorubramin, N-glutaryl-rubropunctamin, monascorubramin, and presumed N-threonyl-rubropunctamin (or acid form of the pigment PP-R) were the major pigmented compounds produced. Interestingly, the bioproduction of these red pigments occurred only when complex organic nitrogen sources were present in the culture medium. These findings are important for the field of the selective production of Monascus-like azaphilone red pigments for the industries.

9.
Microorganisms ; 8(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076311

RESUMO

Sugarcane Distillery Spent Wash (DSW) is among the most pollutant industrial effluents, generally characterized by high Chemical Oxygen Demand (COD), high mineral matters and acidic pH, causing strong environmental impacts. Bioremediation is considered to be a good and cheap alternative to DSW treatment. In this study, 37 strains of yeasts and filamentous fungi were performed to assess their potential to significantly reduce four parameters characterizing the organic load of vinasses (COD, pH, minerals and OD475nm). In all cases, a pH increase (until a final pH higher than 8.5, being an increase superior to 3.5 units, as compared to initial pH) and a COD and minerals removal could be observed, respectively (until 76.53% using Aspergillus terreus var. africanus and 77.57% using Aspergillus niger). Depending on the microorganism, the OD475nm could decrease (generally when filamentous fungi were used) or increase (generally when yeasts were used). Among the strains tested, the species from Aspergillus and Trametes genus offered the best results in the depollution of DSW. Concomitant with the pollutant load removal, fungal biomass, with yields exceeding 20 g·L-1, was produced.

10.
J Fungi (Basel) ; 6(4)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105686

RESUMO

Food processing industry by-products (apple, pomegranate, black carrot, and red beet pulps) were evaluated as raw materials in pigment production by the filamentous fungi Aspergillus carbonarius. The effect of fermentation conditions (solid and submerged-state), incubation period (3, 6, 9, 12, and 15 d), initial substrate pH (4.5, 5.5, 6.5, 7.5, and 8.5), and pulp particle size (<1.4, 1.4-2.0, 2-4, and >4 mm) on fungal pigment production were tested to optimize the conditions. Pigment extraction analysis carried out under solid-state fermentation conditions showed that the maximum pigment production was determined as 9.21 ± 0.59 absorbance unit at the corresponding wavelength per gram (AU/g) dry fermented mass (dfm) for pomegranate pulp (PP) by A. carbonarius for 5 d. Moreover, the highest pigment production was obtained as 61.84 ± 2.16 AU/g dfm as yellowish brown at initial pH 6.5 with < 1.4 mm of substrate particle size for 15-d incubation period. GC×GC-TOFMS results indicate that melanin could be one of the main products as a pigment. SEM images showed that melanin could localize on the conidia of A. carbonarius.

11.
Nat Prod Res ; 34(1): 10-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31140308

RESUMO

Rind color of some high-value PDO cheeses is related to the presence of carotenoids, but little is known about the structure of the pigmented compounds and their origin. Our objective was to describe the carotenoids extracted from the rind of a French cheese, Fourme de Montbrison, and to compare them with the pigments produced by a bacterial strain used as an adjunct culture in the cheese ripening process. Eleven carotenoids were detected in the cheese rinds or in the biomass of Brevibacterium linens. Most of the carotenoids from the rinds belonged to the aryl (aromatic) carotenoid family, including hydroxylated and non-hydroxylated isorenieratene. Chlorobactene, a carotenoid rarely found in food products, was also detected. Agelaxanthin A was identified in the cheese rinds as well as in the B. linens biomass. Occurrence of this compound was previously described in only one scientific publication, where it was isolated from the sponge Agela schmidtii.


Assuntos
Brevibacterium/química , Carotenoides/análise , Queijo/microbiologia , Cor , Bactérias/isolamento & purificação , Fenóis/análise
12.
Nat Prod Res ; 34(1): 93-101, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31172806

RESUMO

Chemical characteristics of novel seed oils, yet not investigated, from three endemic Arecaceae (palm) species from Reunion Island are described. Fatty acid profiles are performed using two-dimensional gas chromatography-mass spectrometry. Carotenoid contents are determined by high performance liquid chromatography-mass spectrometry. The results of the investigations emphasize the particular composition of the unconventional red seed oil from Hyophorbe indica. Characteristic features of this oil reveal a high degree of unsaturation (50% of polyunsaturated fatty acids, with a high content (17%) of omega-3), which is possibly a unique fatty acid composition in the Arecaceae family. The two other palm oils from Dictyosperma album and Latania lontaroides contain high level of saturated fatty acids very similar to that of the edible palm oil. H. indica oil is also very rich in valuable carotenoids; in particular, lutein, ß-carotene and lycopene are detected in a high content (respectively 45, 23 and 35 mg.kg-1 in oil).


Assuntos
Arecaceae/química , Óleo de Palmeira/química , Óleos de Plantas/química , Carotenoides/análise , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Cromatografia Gasosa-Espectrometria de Massas , Luteína/análise , Reunião , Sementes/química , beta Caroteno/análise
13.
AMB Express ; 9(1): 186, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748828

RESUMO

Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC-DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).

14.
Chem Biodivers ; 16(12): e1900442, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31633271

RESUMO

Due to the potentially harmful effects of some synthetic dyes, there is an increasing demand for natural colorants. Recent literature has emphasized the necessity of investigating new sources of dyes. This review discusses the biological sources of dyes derived from the rich plant diversity of Madagascar. As one of the first contributions on the use of these dyestuffs for dyeing textiles, it provides an overview of 128 dye plant species with other potential applications for coloring materials in industry. A detailed description of the botanical and chemical properties of these dyestuffs is given. We believe that the Madagascar plant diversity may be a promising source of novel colorants not yet investigated. We considered it worthwhile to carry out a thorough scientific study of a set of Malagasy plants carefully selected for their coloring properties together with their potential use and valorization in specialized industries where use of natural colorants would be a particular interest.


Assuntos
Corantes/química , Plantas/química , Carotenoides/química , Flavonoides/química , Madagáscar , Malpighiaceae/química , Malpighiaceae/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Plantas/metabolismo , Quinonas/química , Taninos/química
15.
Biotechnol Prog ; 35(1): e2738, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365243

RESUMO

Filamentous fungi have gained growing interest as sources of diverse pigmented secondary metabolites. Some specific polyketides from Ascomycetous species have demonstrated a wide range of industrial applications in food, cosmetic, textile, and in the design of pharmaceutical products. The formulation of recipes containing fungal polyketides has increased over recent years. Fusarium strains were proven useful to mankind in a variety of technologies. Nevertheless, there is still need of new isolates of Fusarium for use in emerging and already existing fields. In this article, we report the concomitant production of the bioactive red bikaverin along with two novel purple pigments by the phytopathogenic Fusarium oxysporum LCP531 strain isolated from soil. In literature, the production of purple pigment had only been described in cultures of Fusarium Fujikuroi, Fusarium verticillioides, and Fusarium graminearum. The production of these naphthoquinonic pigments, their distribution (either produced in mycelia or excreted in liquid medium) and their chemical profiles were investigated with respect to nutrient composition. The pigments were extracted by using a pressurized liquid extraction method, monitored by colorimetric analysis and characterized by HPLC-DAD chromatography. To our knowledge, this is the first report of these two novel wild-type purple naphtoquinones pigments along with bikaverin, where additionally, the culture conditions were put into perspective to optimize fermentation cultures and extraction process accordingly to the pigment/biomolecule desired. These colored naphthoquinones should be promising fungal functional compounds which could be expected to have a place of choice, along with other antibacterial, antifungal, antiviral, anticancer, and antineoplastic derivatives. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2738, 2019.


Assuntos
Fusarium/metabolismo , Naftoquinonas/química , Policetídeos/química , Xantonas/química , Proteínas Fúngicas/metabolismo , Naftoquinonas/isolamento & purificação , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-29372063

RESUMO

BACKGROUND: Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. RESULTS: The fungal biomass yield was 35 g L-1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. CONCLUSIONS: The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

17.
J Fungi (Basel) ; 3(3)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29371552

RESUMO

The use of ascomycetous fungi as pigment producers opens the way to an alternative to synthetic dyes, especially in the red-dye industries, which have very few natural pigment alternatives. The present paper aimed to bio-prospect and screen out 15 selected ascomycetous fungal strains, originating from terrestrial and marine habitats belonging to seven different genera (Penicillium, Talaromyces, Fusarium, Aspergillus, Trichoderma, Dreschlera, and Paecilomyces). We identified four strains, Penicillium purpurogenum rubisclerotium, Fusarium oxysporum, marine strains identified as Talaromyces spp., and Trichoderma atroviride, as potential red pigment producers. The extraction of the pigments is a crucial step, whereby the qualitative and quantitative compositions of each fungal extract need to be respected for reliable identification, as well as preserving bioactivity. Furthermore, there is a growing demand for more sustainable and cost-effective extraction methods. Therefore, a pressurized liquid extraction technique was carried out in this study, allowing a greener and faster extraction step of the pigments, while preserving their chemical structures and bioactivities in comparison to conventional extraction processes. The protocol was illustrated with the production of pigment extracts from P. purpurogenum rubisclerotium and Talaromyces spp. Extracts were analyzed by high-performance liquid-chromatography combined with photodiode array-detection (HPLC-DAD) and high-resolution mass spectrometry (UHPLC-HRMS). The more promising strain was the isolate Talaromyces spp. of marine origin. The main polyketide pigment produced by this strain has been characterized as N-threoninerubropunctamine, a non-toxic red Monascus-like azaphilone pigment.

18.
J Fungi (Basel) ; 3(3)2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29371562

RESUMO

With the impact of globalization on research trends, the search for healthier life styles, the increasing public demand for natural, organic, and "clean labelled" products, as well as the growing global market for natural colorants in economically fast-growing countries all over the world, filamentous fungi started to be investigated as readily available sources of chemically diverse pigments and colorants.[...].

19.
Mar Drugs ; 14(4)2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27023571

RESUMO

Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.


Assuntos
Antraquinonas/metabolismo , Produtos Biológicos/metabolismo , Fungos/metabolismo , Animais , Cor , Humanos
20.
Int J Food Microbiol ; 203: 101-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25802220

RESUMO

In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile.


Assuntos
Microbiologia de Alimentos , Frutas/microbiologia , Compostos Orgânicos Voláteis/análise , Leveduras/química , Leveduras/isolamento & purificação , Análise por Conglomerados , DNA Ribossômico/genética , Aromatizantes/análise , Madagáscar , Reunião , Clima Tropical , Leveduras/classificação , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...