Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychiatr Dis Treat ; 17: 3791-3818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992373

RESUMO

In addition to the classic motor symptoms of Parkinson's disease (PD), people with PD frequently experience nonmotor symptoms that can include autonomic dysfunction and neuropsychiatric symptoms such as PD psychosis (PDP). Common patient characteristics, including older age, use of multiple medications, and arrhythmias, are associated with increased risk of corrected QT interval (QTc) prolongation, and treatments for PDP (antipsychotics, dementia medications) may further increase this risk. This review evaluates how medications used to treat PDP affect QTc interval from literature indexed in the PubMed and Embase databases. Although not indicated for the treatment of psychosis, dementia therapies such as donepezil, rivastigmine, memantine, and galantamine are often used with or without antipsychotics and have minimal effects on QTc interval. Among the antipsychotics, data suggesting clinically meaningful QTc interval prolongation are limited. However, many antipsychotics have other safety concerns. Aripiprazole, olanzapine, and risperidone negatively affect motor function and are not recommended for PDP. Quetiapine is often sedating, can exacerbate underlying neurogenic orthostatic hypotension, and may prolong the QTc interval. Pimavanserin was approved by the US Food and Drug Administration (FDA) in 2016 and remains the only FDA-approved medication available to treat hallucinations and delusions associated with PDP. However, pimavanserin can increase QTc interval by approximately 5-8 ms. The potential for QTc prolongation should be considered in patients with symptomatic cardiac arrhythmias and those receiving QT-prolonging medications. In choosing a medication to treat PDP, expected efficacy must be balanced with potential safety concerns for individual patients.

3.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406560

RESUMO

UNLABELLED: Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4(+) T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. IMPORTANCE: Increased susceptibility to invasive fungal infections in patients on anti-TNF-α therapies underlines the need for understanding the cellular effects of TNF-α signaling in promoting protective immunity to fungal pathogens. Here, we demonstrate that early TNF-α signaling is required for classical activation and accumulation of DC in LALN of C. neoformans-infected mice. Subsequent transcriptional initiation of Th17 followed by Th1 programming in LALN results in pulmonary accumulation of gamma interferon- and interleukin-17A-producing T cells and effective fungal clearance. All of these crucial steps are severely impaired in mice that undergo anti-TNF-α treatment, consistent with their inability to clear C. neoformans This study identified critical interactions between cells of the innate immune system (DC), the emerging T cell responses, and cytokine networks with a central role for TNF-α which orchestrate the development of the immune protection against cryptococcal infection. This information will be important in aiding development and understanding the potential side effects of immunotherapies.


Assuntos
Criptococose/imunologia , Criptococose/prevenção & controle , Células Dendríticas/imunologia , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Cryptococcus neoformans/imunologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/imunologia , Camundongos
4.
J Immunol ; 191(1): 238-48, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23733871

RESUMO

Scavenger receptors represent an important class of pattern recognition receptors shown to mediate both beneficial and detrimental roles in host defense against microbial pathogens. The role of the major macrophage scavenger receptor, scavenger receptor A (SRA), in the immune response against the pathogenic fungus, Cryptococcus neoformans, is unknown. To evaluate the role of SRA in anticryptococcal host defenses, SRA(+/+) mice and SRA(-/-) mice were infected intratracheally with C. neoformans. Results show that infection of SRA(-/-) mice resulted in a reduction in the pulmonary fungal burden at the efferent phase (3 wk) compared with SRA(+/+) mice. Improved fungal clearance in SRA(-/-) mice was associated with decreased accumulation of eosinophils and greater accumulation of CD4(+) T cells and CD11b(+) dendritic cells. Additional parameters were consistent with enhanced anticryptococcal immunity in the infected SRA(-/-) mice: 1) increased expression of the costimulatory molecules CD80 and CD86 by lung APCs, 2) decreased expression of Th2 cytokines (IL-4 and IL-13) and IL-10 in lung leukocytes and in cryptococcal Ag-pulsed splenocytes, 3) diminished IgE production in sera, and 4) increased hallmarks of classical pulmonary macrophage activation. These effects were preceded by increased expression of early pro-Th1 genes in pulmonary lymph nodes at the afferent phase (1 wk). Collectively, our data show that SRA can be exploited by C. neoformans to interfere with the early events of the afferent responses that support Th1 immune polarization. This results in amplification of Th2 arm of the immune response and subsequently impaired adaptive control of C. neoformans in the infected lungs.


Assuntos
Criptococose/imunologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/patologia , Receptores Depuradores Classe A/fisiologia , Animais , Células Cultivadas , Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Feminino , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...