Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 920267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721488

RESUMO

The eukaryotic genome is assembled in a nucleoprotein complex called chromatin, whose organization markedly influences the repair of DNA lesions. For instance, compact chromatin states, broadly categorized as heterochromatin, present a challenging environment for DNA damage repair. Through transcriptional silencing, heterochromatin also plays a vital role in the maintenance of genomic integrity and cellular homeostasis. It is thus of critical importance to decipher whether and how heterochromatin affects the DNA damage response (DDR) to understand how this chromatin state is preserved after DNA damage. Here, we present two laser micro-irradiation-based methods for imaging the DDR in heterochromatin domains in mammalian cells. These methods allow DNA damage targeting to specific subnuclear compartments, direct visualization of the DDR and image-based quantification of the repair response. We apply them to study DNA double-strand break repair pathways in facultative heterochromatin and the repair of UV photoproducts in constitutive heterochromatin. We discuss the advantages and limitations of these methods compared to other targeted approaches for DNA damage induction.

2.
Front Genet ; 12: 730696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539757

RESUMO

In response to DNA double-strand breaks (DSBs), chromatin modifications orchestrate DNA repair pathways thus safeguarding genome integrity. Recent studies have uncovered a key role for heterochromatin marks and associated factors in shaping DSB repair within the nucleus. In this review, we present our current knowledge of the interplay between heterochromatin marks and DSB repair. We discuss the impact of heterochromatin features, either pre-existing in heterochromatin domains or de novo established in euchromatin, on DSB repair pathway choice. We emphasize how heterochromatin decompaction and mobility further support DSB repair, focusing on recent mechanistic insights into these processes. Finally, we speculate about potential molecular players involved in the maintenance or the erasure of heterochromatin marks following DSB repair, and their implications for restoring epigenome function and integrity.

3.
Mol Cell ; 81(10): 2059-2060, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019786

RESUMO

Using a barcoded reporter introduced within a thousand different chromatin locations in human cells, (Schep et al., 2021) characterize repair outcomes of Cas9-induced DNA double-strand breaks (DSBs) and the relative use of DSB repair pathways depending on the local chromatin context.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas , Cromatina/genética , DNA , Reparo do DNA , Humanos
4.
Nat Commun ; 12(1): 2428, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893291

RESUMO

Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/genética , Heterocromatina/genética , Animais , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/efeitos da radiação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Células MCF-7 , Metilação , Camundongos , Células NIH 3T3 , Raios Ultravioleta
5.
Nature ; 590(7847): 660-665, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597753

RESUMO

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Genoma/genética , Histonas/metabolismo , Humanos , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Coesinas
6.
Trends Biochem Sci ; 45(3): 177-179, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882194

RESUMO

DNA double-strand breaks (DSBs) elicit major chromatin changes. Using super-resolution microscopy in human cells, Ochs et al. unveil that the DSB response protein 53BP1 and its effector RIF1 organize DSB-flanking chromatin into circular micro-domains. These structures control the spatial distribution of DSB repair factors safeguarding genome integrity.


Assuntos
Cromatina , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Humanos
7.
DNA Repair (Amst) ; 82: 102686, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476573

RESUMO

DNA double-strand breaks (DSBs) affect chromatin integrity and impact DNA-dependent processes such as transcription. Several studies revealed that the transcription of genes located in close proximity to DSBs is transiently repressed. This is achieved through the establishment of either a transient repressive chromatin context or eviction of the RNA polymerase II complex from the damaged chromatin. While these mechanisms of transcription repression have been shown to affect the efficiency and accuracy of DSB repair, it became evident that the transcriptional state of chromatin before DSB formation also influences this process. Moreover, transcription can be initiated from DSB ends, generating long non-coding (lnc)RNAs that will be processed into sequence-specific double-stranded RNAs. These so-called DNA damage-induced (dd)RNAs dictate DSB repair by regulating the accumulation of DNA repair proteins at DSBs. Thus, a complex interplay between mechanisms of transcription activation and repression occurs at DSBs and affects their repair. Here we review our current understanding of the mechanisms that coordinate transcription and DSB repair to prevent genome instability arising from DNA breaks in transcribed regions.


Assuntos
Quebras de DNA de Cadeia Dupla , Transcrição Gênica , Animais , Reparo do DNA/genética , Humanos
8.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048545

RESUMO

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
9.
Cell Rep ; 13(8): 1598-609, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26586426

RESUMO

DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within "repair foci." Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo
10.
J Org Chem ; 79(17): 7979-99, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25057897

RESUMO

A full account of our anionic polycyclization approach to access highly functionalized tricycles related to quassinoids and terpenoids from several optically active bicyclic enone systems and Nazarov reagents is presented. (+)-Carvone is the only chiral source used to fix the entire stereochemistry of all of the tricycles, and the stereochemical outcome of this process was unambiguously determined by X-ray crystallographic analysis. The utility of this strategy was demonstrated by the stereocontrolled construction of advanced tricycles related to the highly potent anticancer natural product bruceantin, a member of quassinoid family, and the total synthesis of the cardioactive terpenoid (+)-cassaine, a nonsteroidal inhibitor of Na(+)-K(+)-ATPase.


Assuntos
Alcaloides/química , Alcaloides/síntese química , Ânions/química , Monoterpenos/química , Quassinas/química , Terpenos/química , Abietanos , Produtos Biológicos , Cristalografia por Raios X , Ciclização , Monoterpenos Cicloexânicos , Humanos , Quassinas/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Estereoisomerismo
11.
Nat Struct Mol Biol ; 21(4): 366-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658350

RESUMO

Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Linhagem Celular , Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Rad51 Recombinase/metabolismo , Transcrição Gênica
12.
Nat Protoc ; 9(3): 517-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504477

RESUMO

Recent advances in our understanding of the management and repair of DNA double-strand breaks (DSBs) rely on the study of targeted DSBs that have been induced in living cells by the controlled activity of site-specific endonucleases, usually recombinant restriction enzymes. Here we describe a protocol for quantifying these endonuclease-induced DSBs; this quantification is essential to an interpretation of how DSBs are managed and repaired. A biotinylated double-stranded oligonucleotide is ligated to enzyme-cleaved genomic DNA, allowing the purification of the cleaved DNA on streptavidin beads. The extent of cleavage is then quantified either by quantitative PCR (qPCR) at a given site or at multiple sites by genome-wide techniques (e.g., microarrays or high-throughput sequencing). This technique, named ligation-mediated purification, can be performed in 2 d. It is more accurate and sensitive than existing alternative methods, and it is compatible with genome-wide analysis. It allows the amount of endonuclease-mediated breaks to be precisely compared between two conditions or across the genome, thereby giving insight into the influence of a given factor or of various chromatin contexts on local repair parameters.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA/isolamento & purificação , Endonucleases/metabolismo , Sequência de Bases , DNA/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Estreptavidina
13.
Nucleic Acids Res ; 42(3): e19, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362840

RESUMO

5' strand resection at DNA double strand breaks (DSBs) is critical for homologous recombination (HR) and genomic stability. Here we develop a novel method to quantitatively measure single-stranded DNA intermediates in human cells and find that the 5' strand at endonuclease-generated break sites is resected up to 3.5 kb in a cell cycle-dependent manner. Depletion of CtIP, Mre11, Exo1 or SOSS1 blocks resection, while depletion of 53BP1, Ku or DNA-dependent protein kinase catalytic subunit leads to increased resection as measured by this method. While 53BP1 negatively regulates DNA end processing, depletion of Brca1 does not, suggesting that the role of Brca1 in HR is primarily to promote Rad51 filament formation, not to regulate end resection.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ciclo Celular/genética , Linhagem Celular , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Reação em Cadeia da Polimerase/métodos , Receptores de Estrogênio/genética
14.
Org Lett ; 15(24): 6270-3, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24295200

RESUMO

A stereoselective total synthesis of (+)-cassaine (1) via an anionic polycyclization methodology is described. Commercially available (+)-carvone (5), the only chiral source, was used to fix the entire stereochemistry of the natural product. Anionic polycyclization of a new substituted 2-(methoxycarbonyl)cyclohex-2-en-1-one (4) with known 1-phenylysulfinyl-3-penten-2-one (3) provided the versatile tricycle (2) with requisite stereochemistry. A sequence of functional group manipulations of tricycle (2) furnished the natural product 1.


Assuntos
Alcaloides/síntese química , Abietanos , Alcaloides/química , Ânions/síntese química , Ânions/química , Ciclização , Conformação Molecular , Estereoisomerismo
15.
PLoS Genet ; 8(1): e1002460, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275873

RESUMO

Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.


Assuntos
Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Histonas/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Recombinação Homóloga , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Sítio de Iniciação de Transcrição , Coesinas
16.
Cell Cycle ; 9(15): 2963-72, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20714222

RESUMO

DNA double strand breaks (DSBs) are among the most deleterious forms of lesions and deciphering the details of the chromatin landscape induced around DSBs represents a great challenge for molecular biologists. Chromatin Immunoprecipitation, followed by microarray hybridisation (ChIP-chip) or high-throughput sequencing (ChIP-seq), are powerful techniques that provide high-resolution maps of protein-genome interactions. However, applying these techniques to study chromatin changes induced around DSBs was previously hindered due to a lack of suitable DSB induction techniques. We have recently developed an experimental system utilizing a restriction enzyme fused to a modified oestrogen receptor ligand binding domain (AsiSI-ER), which generates multiple, sequence-specific and unambiguously positioned DSBs across the genome upon induction with 4-hydroxytamoxifen (4OHT).(1) Cell lines expressing this construct represent a powerful tool to study specific chromatin changes during DSB repair, enabling high-resolution profiling of DNA repair complexes and chromatin modifications induced around DSBs. Using this system, we have recently produced the first map of gammaH2AX, a DSB-induced chromatin modification, on two human chromosomes and have investigated its spreading properties.(1) Here we provide additional data characterizing the cell lines, present a genome-wide profile of gammaH2AX obtained by ChIP-seq, and discuss the potential of our system towards investigations of previously uncharacterized aspects of DSB repair.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Imunofluorescência , Genoma Humano/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
17.
EMBO J ; 29(8): 1446-57, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20360682

RESUMO

Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.


Assuntos
Mapeamento Cromossômico , Quebras de DNA de Cadeia Dupla , Histonas/genética , Linhagem Celular , Histonas/metabolismo , Humanos , Fosforilação , Mapeamento por Restrição , Transcrição Gênica
18.
Org Lett ; 12(3): 508-11, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20055501

RESUMO

The reactivity of two new bicyclic cyclohexenones (13 and 27) with several Nazarov reagents is presented. A flexible synthetic strategy is developed and provides access to highly substituted tricycles related to quassinoids and triterpenes.


Assuntos
Cicloexanonas/química , Quassinas/síntese química , Triterpenos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Ciclização , Estrutura Molecular , Quassinas/química , Triterpenos/química
19.
Blood ; 115(5): 985-94, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965664

RESUMO

Rituximab (RTX), a monoclonal antibody directed against the CD20 protein, is a drug commonly used in the treatment of B-cell-derived lymphoid neoplasias and of antibody-mediated autoimmune diseases. In addition to cell- and complement-mediated B-cell depletion, RTX is thought to inhibit B-cell survival and proliferation through negative regulation of canonical signaling pathways involving Akt, ERK, and mammalian target of rapamycin. However, surprisingly, although B-cell receptor (BCR) signaling has been considered critical for normal and more recently, for neoplastic B cells, the hypothesis that RTX could target BCR has never been investigated. Using follicular lymphoma cell lines as models, as well as normal B cells, we show here, for the first time, that pretreatment with RTX results in a time-dependent inhibition of the BCR-signaling cascade involving Lyn, Syk, PLC gamma 2, Akt, and ERK, and calcium mobilization. The inhibitory effect of RTX correlates with decrease of raft-associated cholesterol, complete inhibition of BCR relocalization into lipid raft microdomains, and down-regulation of BCR immunoglobulin expression. Thus, RTX-mediated alteration of BCR expression, dynamics, and signaling might contribute to the immunosuppressive activity of the drug.


Assuntos
Anticorpos Monoclonais/farmacologia , Colesterol/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anticorpos Monoclonais Murinos , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Fosfolipase C gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Rituximab , Quinase Syk , Fatores de Tempo , Quinases da Família src/metabolismo
20.
Reprod Biol Endocrinol ; 7: 80, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19656380

RESUMO

BACKGROUND: During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-beta isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo. METHODS: Rats with regular estrous cycle (4 days) were killed at different days of estrous cycle (diestrus, proestrus, estrus and metestrus). Pseudopregnancy was induced with sex steroids in ovariectomized rats and rats were killed at different days (days 1-9). Uteri were collected and either fixed for immunohistochemical staining (IHC) or processed for RT-PCR and Western analyses. For the in vitro part of the study, rats were ovariectomized and decidualization was induced using sex steroids. Endometrial stromal decidual cells were purified, cultured and treated with different concentrations of TGF-beta isoforms. RESULTS: Our results showed that all three TGF-beta isoforms are present, but are localized differently in the endometrium during the estrous cycle and their expression is regulated differently during pseudopregnancy. In cultured stromal cells, we found that TGF-beta3 isoform induced Smad2 phosphorylation, indicating that the Smad pathway is activated by TGF-beta3 in these cells. Furthermore, TGF-beta2 and TGF-beta3 induced a dose-dependant increase of apoptosis in cultured stromal cells, as demonstrated by Hoechst nuclear staining. Noteworthy, TGF-beta2 and TGF-beta3 reduced the level of the anti-apoptotic XIAP protein, as well as the level of phosphorylated/active Akt, a well known survival protein, in a dose-dependent manner. CONCLUSION: Those results suggest that TGF-beta might play an important role in the remodelling endometrium during the estrous cycle and in the regulation of apoptosis in rat decidual cells, in which inhibition of Akt survival pathway might be an important mechanism involved in the regulation of apoptosis.


Assuntos
Decídua/metabolismo , Endométrio/metabolismo , Ciclo Estral/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pseudogravidez/fisiopatologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Ciclo Estral/efeitos dos fármacos , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Fator de Crescimento Transformador beta3/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...