Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 35(19): 3752-3760, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851093

RESUMO

MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. RESULTS: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. AVAILABILITY AND IMPLEMENTATION: The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Dados , Metabolômica , Biologia Computacional , Software , Fluxo de Trabalho
2.
PeerJ Comput Sci ; 5: e232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33816885

RESUMO

The computational demands for scientific applications are continuously increasing. The emergence of cloud computing has enabled on-demand resource allocation. However, relying solely on infrastructure as a service does not achieve the degree of flexibility required by the scientific community. Here we present a microservice-oriented methodology, where scientific applications run in a distributed orchestration platform as software containers, referred to as on-demand, virtual research environments. The methodology is vendor agnostic and we provide an open source implementation that supports the major cloud providers, offering scalable management of scientific pipelines. We demonstrate applicability and scalability of our methodology in life science applications, but the methodology is general and can be applied to other scientific domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...