Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260585

RESUMO

cGAMP is a second messenger that is synthesized in the cytosol upon detection of cytosolic dsDNA and passed between cells to facilitate downstream immune signaling. ENPP1, an extracellular enzyme, was the only metazoan cGAMP hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from that of ENPP1 and accounts for all remaining cGAMP hydrolysis activity in mice lacking ENPP1. Importantly, we also show that as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolase activity results in diminished cancer growth and metastasis of certain tumor types. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work clearly shows that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a new target for cancer immunotherapy.

2.
Nat Chem Biol ; 20(1): 30-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400538

RESUMO

Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.


Assuntos
Diester Fosfórico Hidrolases , Anticorpos de Domínio Único , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases , Microscopia Crioeletrônica
3.
Sci Rep ; 13(1): 12786, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550335

RESUMO

We developed and validated a next generation sequencing-(NGS) based NIPT assay using quantitative counting template (QCT) technology to detect RhD, C, c, E, K (Kell), and Fya (Duffy) fetal antigen genotypes from maternal blood samples in the ethnically diverse U.S. population. Quantitative counting template (QCT) technology is utilized to enable quantification and detection of paternally derived fetal antigen alleles in cell-free DNA with high sensitivity and specificity. In an analytical validation, fetal antigen status was determined for 1061 preclinical samples with a sensitivity of 100% (95% CI 99-100%) and specificity of 100% (95% CI 99-100%). Independent analysis of two duplicate plasma samples was conducted for 1683 clinical samples, demonstrating precision of 99.9%. Importantly, in clinical practice the no-results rate was 0% for 711 RhD-negative non-alloimmunized pregnant people and 0.1% for 769 alloimmunized pregnancies. In a clinical validation, NIPT results were 100% concordant with corresponding neonatal antigen genotype/serology for 23 RhD-negative pregnant individuals and 93 antigen evaluations in 30 alloimmunized pregnancies. Overall, this NGS-based fetal antigen NIPT assay had high performance that was comparable to invasive diagnostic assays in a validation study of a diverse U.S. population as early as 10 weeks of gestation, without the need for a sample from the biological partner. These results suggest that NGS-based fetal antigen NIPT may identify more fetuses at risk for hemolytic disease than current clinical practice, which relies on paternal genotyping and invasive diagnostics and therefore is limited by adherence rates and incorrect results due to non-paternity. Clinical adoption of NIPT for the detection of fetal antigens for both alloimmunized and RhD-negative non-alloimmunized pregnant individuals may streamline care and reduce unnecessary treatment, monitoring, and patient anxiety.


Assuntos
Antígenos de Grupos Sanguíneos , Sistema do Grupo Sanguíneo Rh-Hr , Gravidez , Feminino , Recém-Nascido , Humanos , Diagnóstico Pré-Natal/métodos , Cuidado Pré-Natal , Feto , Antígenos de Grupos Sanguíneos/genética , Genótipo
4.
Genet Med ; 25(2): 100334, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454238

RESUMO

PURPOSE: The purpose of this study was to evaluate the clinical performance of carrier screening for cystic fibrosis, hemoglobinopathies, and spinal muscular atrophy with reflex single-gene noninvasive prenatal screening (sgNIPS), which does not require paternal carrier screening. METHODS: An unselected sample of 9151 pregnant individuals from the general US pregnant population was screened for carrier status, of which 1669 (18.2%) were identified as heterozygous for one or more pathogenic variants and reflexed to sgNIPS. sgNIPS results were compared with newborn outcomes obtained from parent survey responses or provider reports for a cohort of 201 pregnancies. RESULTS: Overall, 98.7% of pregnant individuals received an informative result (no-call rate = 1.3%), either a negative carrier report or, if identified as heterozygous for a pathogenic variant, a reflex sgNIPS report. In the outcomes cohort, the negative predictive value of sgNIPS was 99.4% (95% CI = 96.0%-99.9%) and average positive predictive value (PPV) of sgNIPS was 48.3% (95% CI = 36.1%-60.1%). Importantly, personalized PPVs accurately reflected the percentage of affected pregnancies in each PPV range, and all pregnancies with a sgNIPS fetal risk of >9 in 10 (90% PPV) were affected. CONCLUSION: Although traditional carrier screening is most effective when used to assess reproductive risk before pregnancy, more than 95% of the time it is pursued during a pregnancy and is complicated by incomplete uptake of paternal carrier screening (<50%) and misattributed paternity (∼10%). Even in an idealized setting, when both partners have carrier screening, the maximum risk for having an affected pregnancy is 1 in 4 (equivalent of a 25% PPV). Carrier screening with sgNIPS during pregnancy is an alternative that does not require a paternal sample and provides accurate fetal risk in a timely manner that can be used for prenatal counseling and pregnancy management.


Assuntos
Teste Pré-Natal não Invasivo , Cuidado Pré-Natal , Feminino , Recém-Nascido , Gravidez , Humanos , Feto , Heterozigoto , Medição de Risco , Diagnóstico Pré-Natal/métodos
5.
Proc Natl Acad Sci U S A ; 119(21): e2119189119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588451

RESUMO

The metazoan innate immune second messenger 2'3'-cGAMP is present both inside and outside cells. However, only extracellular cGAMP can be negatively regulated by the extracellular hydrolase ENPP1. Here, we determine whether ENPP1's regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating stimulator of interferon genes (STING) signaling. We identified ENPP1H362A, a point mutation that cannot degrade the 2'-5' linkage in cGAMP while maintaining otherwise normal function. The selectivity of this histidine is conserved down to bacterial nucleotide pyrophosphatase/phosphodiesterase (NPP), allowing structural analysis and suggesting an unexplored ancient history of 2'-5' cyclic dinucleotides. Enpp1H362A mice demonstrated that extracellular cGAMP is not responsible for the devastating phenotype in ENPP1-null humans and mice but is responsible for antiviral immunity and systemic inflammation. Our data define extracellular cGAMP as a pivotal STING activator, identify an evolutionarily critical role for ENPP1 in regulating inflammation, and suggest a therapeutic strategy for viral and inflammatory conditions by manipulating ENPP1 activity.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Transdução de Sinais
6.
Annu Rev Biochem ; 91: 599-628, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287475

RESUMO

In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , DNA/genética , Humanos , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/genética
7.
J Med Econ ; 25(1): 403-411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289246

RESUMO

OBJECTIVE: To evaluate the clinical benefits and achievable cost savings associated with the adoption of a carrier screen with reflex single-gene non-invasive prenatal test (sgNIPT) in prenatal care. METHOD: A decision-analytic model was developed to compare carrier screen with reflex sgNIPT (maternal carrier status and fetal risk reported together) as first-line carrier screening to the traditional carrier screening workflow (positive maternal carrier screen followed by paternal screening to evaluate fetal risk). The model compared the clinical outcomes and healthcare costs associated with the two screening methods. These results were used to simulate appropriate pricing for reflex sgNIPT. RESULTS: Reflex sgNIPT carrier screening-detected 108 of 110 affected pregnancies per 100,000 births (98.5% sensitivity), whereas traditional carrier screening-detected 46 of 110 affected pregnancies (41.5% sensitivity). The cost to identify one affected pregnancy was reduced by 62% in the reflex sgNIPT scenario compared to the traditional scenario. Adding together the testing cost savings and the savings from earlier clinical intervention made possible by reflex sgNIPT, the total cost savings was $37.6 million per 100,000 pregnancies. Based on these cost savings, we simulated appropriate reflex sgNIPT pricing range: if the cost to identify one affected pregnancy is the unit cost, carrier screening with reflex sgNIPT can be priced up to $1,859 per test (or $7,233 if sgNIPT is billed separately); if the cost per 100,000 pregnancies is the unit cost, carrier screening with sgNIPT can be priced up to $1,070 per test (or $2,336 if sgNIPT is billed separately). CONCLUSION: Using the carrier screen with reflex sgNIPT as first-line screening improves the detection of affected fetuses by 2.4-fold and can save costs for the healthcare system. A real-life experience will be needed to assess the clinical utility and exact cost savings of carrier screen with reflex sgNIPT.


Assuntos
Feto , Diagnóstico Pré-Natal , Análise Custo-Benefício , Feminino , Triagem de Portadores Genéticos , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Reflexo
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518228

RESUMO

Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.


Assuntos
Amiloide/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , alfa-Sinucleína/metabolismo , Entropia , Humanos , Doença de Parkinson/metabolismo , Agregados Proteicos/fisiologia , Proteostase/fisiologia
9.
Mol Cell ; 80(4): 578-591.e5, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33171122

RESUMO

Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter exported by diseased cells and imported into host cells to activate the innate immune STING pathway. We previously identified SLC19A1 as a cGAMP importer, but its use across human cell lines is limited. Here, we identify LRRC8A heteromeric channels, better known as volume-regulated anion channels (VRAC), as widely expressed cGAMP transporters. LRRC8A forms complexes with LRRC8C and/or LRRC8E, depending on their expression levels, to transport cGAMP and other 2'3'-cyclic dinucleotides. In contrast, LRRC8D inhibits cGAMP transport. We demonstrate that cGAMP is effluxed or influxed via LRRC8 channels, as dictated by the cGAMP electrochemical gradient. Activation of LRRC8A channels, which can occur under diverse stresses, strongly potentiates cGAMP transport. We identify activator sphingosine 1-phosphate and inhibitor DCPIB as chemical tools to manipulate channel-mediated cGAMP transport. Finally, LRRC8A channels are key cGAMP transporters in resting primary human vasculature cells and universal human cGAMP transporters when activated.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transporte Biológico , Ciclopentanos/farmacologia , Humanos , Indanos/farmacologia , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Células U937
10.
Cell Chem Biol ; 27(11): 1347-1358.e5, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32726585

RESUMO

Cancer cells initiate an innate immune response by synthesizing and exporting the small-molecule immunotransmitter cGAMP, which activates the anti-cancer Stimulator of Interferon Genes (STING) pathway in the host. An extracellular enzyme, ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), hydrolyzes cGAMP and negatively regulates this anti-cancer immune response. Small-molecule ENPP1 inhibitors are much needed as tools to study the basic biology of extracellular cGAMP and as investigational cancer immunotherapy drugs. Here, we surveyed structure-activity relationships around a series of cell-impermeable and thus extracellular-targeting phosphonate inhibitors of ENPP1. In addition, we solved the crystal structure of an exemplary phosphonate inhibitor to elucidate the interactions that drive potency. This study yielded several best-in-class inhibitors with Ki < 2 nM and excellent physicochemical and pharmacokinetic properties. Finally, we demonstrate that an ENPP1 inhibitor delays tumor growth in a breast cancer mouse model. Together, we have developed ENPP1 inhibitors that are excellent tool compounds and potential therapeutics.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Pirofosfatases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neurotransmissores/química , Neurotransmissores/isolamento & purificação , Neurotransmissores/metabolismo , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/isolamento & purificação , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
11.
J Biol Chem ; 295(15): 4881-4892, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32127400

RESUMO

2',5'/3',5'-cGMP-AMP (cGAMP) is a second messenger produced in response to cytosolic dsDNA that activates the stimulator of interferon genes (STING) pathway. We recently discovered that cGAMP is exported by cancer cells and that this extracellular signal is an immunotransmitter key to tumor detection and elimination by the innate immune system. The enhancement of extracellular cGAMP levels therefore holds great promise for managing cancer. However, there is still much more to understand about the basic biology of cGAMP before its full therapeutic potential can be realized. To answer these questions, we must be able to detect and quantitate cGAMP with an assay that is high-throughput, sensitive, and precise. Existing assays fall short of these needs. Here, we describe the development of cGAMP-Luc, a coupled enzyme assay that relies on the degradation of cGAMP to AMP by ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) and an optimized assay for the detection of AMP by luciferase. We also developed STING-CAP, a STING-mediated method to concentrate and purify cGAMP from any type of biological sample. We conclude that cGAMP-Luc is an economical high-throughput assay that matches the accuracy of and surpasses the detection limit of MS, the current gold standard of cGAMP quantitation. We propose that cGAMP-Luc is a powerful tool that may enable discoveries that advance insights into extracellular cGAMP levels in healthy and diseased tissues, such as cancer.


Assuntos
Ensaios Enzimáticos/métodos , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Nucleotídeos Cíclicos/análise , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Proteínas de Membrana/genética , Neoplasias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Transdução de Sinais
12.
Nat Cancer ; 1(2): 184-196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-33768207

RESUMO

2'3'-cyclic GMP-AMP (cGAMP) is an intracellular second messenger that is synthesized in response to cytosolic double-stranded DNA and activates the innate immune STING pathway. Our previous discovery of its extracellular hydrolase ENPP1 hinted at the existence of extracellular cGAMP. Here, we detected that cGAMP is continuously exported but then efficiently cleared by ENPP1, explaining why it has previously escaped detection. By developing potent, specific, and cell impermeable ENPP1 inhibitors, we found that cancer cells continuously export cGAMP in culture at steady state and at higher levels when treated with ionizing radiation (IR). In mouse tumors, depletion of extracellular cGAMP decreased tumor-associated immune cell infiltration and abolished the curative effect of IR. Boosting extracellular cGAMP with ENPP1 inhibitors synergized with IR to delay tumor growth. In conclusion, extracellular cGAMP is an anti-cancer immunotransmitter that could be harnessed to treat cancers with low immunogenicity.


Assuntos
Neoplasias , Nucleotídeos Cíclicos , Animais , Camundongos , Neoplasias/radioterapia , Nucleotídeos Cíclicos/genética , Sistemas do Segundo Mensageiro
13.
Anal Chem ; 90(6): 3849-3855, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29451779

RESUMO

Optical detection has become a convenient and scalable approach to read out information from microfluidic systems. For the study of many key biomolecules, however, including peptides and proteins, which have low fluorescence emission efficiencies at visible wavelengths, this approach typically requires labeling of the species of interest with extrinsic fluorophores to enhance the optical signal obtained - a process which can be time-consuming, requires purification steps, and has the propensity to perturb the behavior of the systems under study due to interactions between the labels and the analyte molecules. As such, the exploitation of the intrinsic fluorescence of protein molecules in the UV range of the electromagnetic spectrum is an attractive path to allow the study of unlabeled proteins. However, direct visualization using 280 nm excitation in microfluidic devices has to date commonly required the use of coherent sources with frequency multipliers and devices fabricated out of materials that are incompatible with soft lithography techniques. Here, we have developed a simple, robust, and cost-effective 280 nm LED platform that allows real-time visualization of intrinsic fluorescence from both unlabeled proteins and protein complexes in polydimethylsiloxane microfluidic channels fabricated through soft lithography. Using this platform, we demonstrate intrinsic fluorescence visualization of proteins at nanomolar concentrations on chip and combine visualization with micron-scale diffusional sizing to measure the hydrodynamic radii of individual proteins and protein complexes under their native conditions in solution in a label-free manner.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Proteínas/análise , Animais , Bovinos , Galinhas , Difusão , Dimetilpolisiloxanos/química , Desenho de Equipamento , Fluorescência , Hidrodinâmica , Dispositivos Lab-On-A-Chip , Muramidase/análise , Soroalbumina Bovina/análise , Soluções , Cadeia B de alfa-Cristalina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...